Following on from a previous post of mine about linear operators, I'm trying to firm up my understanding of changing between bases for a given vector space.(adsbygoogle = window.adsbygoogle || []).push({});

For a given vector space [itex]V[/itex] over some scalar field [itex]\mathbb{F}[/itex], and two basis sets [itex] \mathcal{B} = \lbrace\mathbf{e}_{i}\rbrace_{i=1,\ldots , n}[/itex] and [itex] \mathcal{B}' = \lbrace\mathbf{e}'_{i}\rbrace_{i=1,\ldots , n}[/itex] which form two given bases for [itex]V[/itex], we can express any vector [itex]\mathbf{v} \in V[/itex] as a unique linear combination with respect to each of these bases, i.e. [tex]\qquad\qquad\qquad\qquad\qquad\qquad\qquad \mathbf{v}=\sum_{i=1}^{n}v_{i}\mathbf{e}_{i} \quad\text{and}\quad \mathbf{v} = \sum_{i=1}^{n}v'_{i}\mathbf{e}'_{i} [/tex] Now, suppose we have some linear operator [itex]\mathcal{S}:V \longrightarrow V [/itex] which maps the basis [itex]\mathcal{B}[/itex] to the basis [itex]\mathcal{B}'[/itex], defined in the following manner [tex]\qquad\qquad\qquad\qquad\qquad\qquad\qquad\mathcal{S} \left(\mathbf{e}_{j}\right)= \mathbf{e}'_{j}[/tex] As [itex]\mathcal{S} \left(\mathbf{e}_{j}\right) \in V[/itex] is itself a vector in [itex]V[/itex] we can express it as a linear combination of the basis vectors [itex]\mathbf{e}_{i} \;\; \left(i=1, \ldots , n\right)[/itex], [tex] \qquad\qquad\qquad\qquad\qquad\qquad\qquad\mathbf{e}'_{j}= \sum_{i=1}^{n}\left(\mathcal{S} \left(\mathbf{e}_{j}\right)\right)_{i}\mathbf{e}_{i}= \sum_{i=1}^{n}S_{ij}\mathbf{e}_{i} [/tex] where [itex]S_{ij}\equiv \left(\mathcal{S} \left(\mathbf{e}_{j}\right)\right)_{i}[/itex] is the [itex]i^{th}[/itex] component of the [itex]j^{th}[/itex] basis vector [itex]\mathbf{e}'_{j}[/itex] with respect to the basis [itex]\mathcal{B}[/itex]. The [itex]S_{ij}\equiv \left(\mathcal{S} \left(\mathbf{e}_{j}\right)\right)_{i}[/itex] are the components of the linear operator [itex]\mathcal{S}[/itex] with respect to the basis [itex]\mathcal{B}[/itex]. The columns of [itex]\left[\mathcal{S}\right]_{\mathcal{B}}[/itex] are the column vector representations of the vectors [itex]\mathbf{e}'_{j} \in \mathcal{B}'[/itex] with respect to the basis [itex]\mathcal{B}[/itex].

Would this be a correct description? Thanks for your time.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linear operators and change of basis

Loading...

Similar Threads - Linear operators change | Date |
---|---|

A Nonlinear operators vs linear | Jan 16, 2018 |

A Extending a linear representation by an anti-linear operator | Dec 21, 2017 |

A Commutation and Non-Linear Operators | Nov 15, 2017 |

I Can a shear operation introduce a new linear dependency? | Oct 11, 2017 |

B Proof of elementary row matrix operation. | Jun 6, 2017 |

**Physics Forums - The Fusion of Science and Community**