- #1
drawar
- 132
- 0
Homework Statement
Given 2 problems:
(P1) min min(##x_1,x_2##)
s.t ##x_1, x_2 \geq 0##
(P2) min t
s.t ##t \leq x_1##
##t \leq x_2##
##x_1, x_2 \geq 0##
(i) Is the mapping f(##x_1,x_2##)=min(##x_1,x_2##) convex?
(ii) What are the objectives of (P1) and (P2)?
Homework Equations
The Attempt at a Solution
Assume f is indeed convex, then I have to prove the following:
For every ##(x_1,x_2), (y_1,y_2) \in \mathrm{R}^2##, and ##0 \leq \lambda \leq 1## ,
##f(\lambda(x_1,x_2)+(1-\lambda)(y_1,y_2)) \leq \lambda f(x_1,x_2) + (1-\lambda) f(y_1,y_2)## .
But how can I proceed from here?
Any help would be much appreciated, thanks!