Undergrad Solve Linear System of ODEs: x',y' w/ Initial Conditions x(0),y(0)

Click For Summary
SUMMARY

The discussion focuses on solving the linear system of ordinary differential equations (ODEs) given by x' = 2x + 3y and y' = -3x + y, with initial conditions x(0) = 1 and y(0) = 2. The correct auxiliary equation m^2 - 3m + 11 = 0 is derived, leading to complex eigenvalues m = 3/2 ± √35/2 i. The general solution is expressed as x(t) = y(t) = e^(3/2 t)(c1 cos(√35/2 t) + c2 sin(√35/2 t)), where c1 and c2 are constants determined by the initial conditions.

PREREQUISITES
  • Understanding of linear systems of ODEs
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of complex numbers and their applications in differential equations
  • Ability to apply initial conditions to determine constants in solutions
NEXT STEPS
  • Study the method of solving homogeneous linear differential equations with constant coefficients
  • Learn about the application of eigenvalues in solving systems of ODEs
  • Explore the use of initial conditions in determining specific solutions to differential equations
  • Investigate alternative methods for solving linear systems of ODEs, such as Laplace transforms
USEFUL FOR

Mathematicians, engineering students, and anyone involved in solving linear systems of ordinary differential equations, particularly those dealing with initial value problems.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Solve the linear system of ODE ##x' = 2x + 3y##, ##y' = -3x + y## with initial conditions ##x(0) = 1, y(0) = 2##.
 
Physics news on Phys.org
The differential equation

\begin{align*}
\frac{d}{dt} \binom{x}{y} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

with initial conditions ##x(0)=1##, ##y(0) = 2## has the solution:

\begin{align*}
\binom{x}{y} = \exp \left\{
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix} t \right\}
\binom{1}{2}
\end{align*}

When the eigenvalues are complex and distinct such that ##\lambda_1 = \overline{\lambda_2} = a+ib## we have that

\begin{align*}
e^{At} = e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \qquad (*) .
\end{align*}

We will prove this formula is correct by showing that ##\frac{d}{dt} (RHS) = A (RHS)## and by noting that the ##RHS = \mathbb{1}## at ##t = 0##. By the Cayley-Hamilton theorem we have ##A^2 = 2a A - (a^2+b^2) \mathbb{1}##. We use this in the form ##A (A - a \mathbb{1}) = aA - (a^2 + b^2) \mathbb{1}## in the proof of ##\frac{d}{dt} (RHS) = A (RHS)##,

\begin{align*}
& \frac{d}{dt} \left[ e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \right]
\nonumber \\
& = a e^{at} \cos (bt) \mathbb{1} - b e^{at} \sin (bt) \mathbb{1} + \dfrac{a e^{at} \sin (bt)}{b} (A - a \mathbb{1}) + e^{at} \cos (bt) (A - a \mathbb{1})
\nonumber \\
& = A e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (aA - (a^2 + b^2) \mathbb{1})
\nonumber \\
& = A \left[ e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \right] .
\end{align*}

The eigenvalues are determined by

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + \frac{\sqrt{35}}{2} i , \quad \lambda_2 = \frac{3}{2} - \frac{\sqrt{35}}{2} i .
\end{align*}

So that by ##(*)## we have

\begin{align*}
e^{At} & = e^{3 t/2} \cos (\frac{ \sqrt{35} }{2} t)
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
+ e^{3 t/2} \dfrac{\sin (\frac{ \sqrt{35} }{2} t)}{\sqrt{35}}
\begin{pmatrix}
1 & 6 \\
-6 & -1
\end{pmatrix}
\end{align*}

So

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8}
\end{align*}
 
Last edited:
  • Like
Likes Office_Shredder
In the previous post I wrote down slightly the wrong matrix. I've now written down the correct matrix and recalculated the eigenvalues.

By the way, there are other methods of solving the problem!
 
Last edited:
julian said:
By the way, there are other methods of solving the problem!

The system is equivalent to two second order ODE's
$$ y'' - 3y'+11y , y(0)=2$$

$$ x''-3x'+11x=0, x(0)=1 $$

Algebraic error fixed ( hopefully)...
 
Last edited:
When working with these types of problems is it implied that x = x(t) and y = y(t).
 
Mayhem said:
When working with these types of problems is it implied that x = x(t) and y = y(t).
Yes, they are functions of ##t##.
 
Last edited:
erobz said:
The system is equivalent to two second order ODE's
$$ y'' - 3y'+11y , y(0)=2$$

$$ x''-3x'+11x=0, x(0)=1 $$

Algebraic error fixed ( hopefully)...
Because you have a second order differential equation the general solution will involve two unknown constants, so you need ##x(0)## and ##x'(0)##. Now, ##x'(0)## was not specified in the question but that does not present a problem because you are given a formula for ##x'(t)##. Yep?

Do you know how to go about solving your differential equation? It is a homogeneous linear differential equation of second order with constant coefficients.
 
Last edited:
julian said:
Because you have a second order differential equation the general solution will involve two unknown constants, so you need ##x(0)## and ##x'(0)##. Now, ##x'(0)## was not specified in the question but that does not present a problem because you are given a formula for ##x'(t)##. Yep?
Using the original equations and given initial conditions we find ## x'(0) = 8, y'(0) = -1##

julian said:
Do you know how to go about solving your differential equation? It is a homogeneous linear differential equation of second order with constant coefficients.

With an old textbook in front of me... Find the auxiliary equation:

$$m^2 -3m+11 = 0 \implies m = \frac{3}{2} \pm \frac{\sqrt{35}i}{2} $$

I think that implies the general solution ( for ##y## or ##x## - same ODE - different i.c. ):

$$ x(t) = y(t) = e^{ \left( \frac{3}{2}t \right) } \left( c_1 \cos \left( \frac{ \sqrt{35} }{2} t \right) + c_2 \sin \left( \frac{ \sqrt{35} }{2} t \right) \right) $$
 
There are a couple of other methods of solving the problem.

Start with the "exponential ansatz":

\begin{align*}
\binom{x(t)}{y(t)} = \binom{C}{D} e^{\lambda t} .
\end{align*}

Substituting this into

\begin{align*}
\binom{x'}{y'} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

we arrive at the eigenvector problem

\begin{align*}
\lambda \binom{C}{D} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D}
\end{align*}

Let's find the eigenvalues:

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2} , \qquad \lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{align*}

As the eigenvalues are the complex conjugate of each other one of the eigenvectors will be proportional to the complex conjugate of the other. The eigenvector equation is

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D} =
(\frac{3}{2} + i \frac{\sqrt{35}}{2}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
4 & 6 \\
-6 & 2
\end{pmatrix}
\binom{C}{D} =
(3 + i \sqrt{35}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
1 - i \sqrt{35} & 6 \\
-6 & -1 - i \sqrt{35}
\end{pmatrix}
\binom{C}{D} = 0
\end{align*}

or

\begin{align*}
(1 - i \sqrt{35}) C + 6 D = 0
\nonumber \\
-6 C - (1 + i \sqrt{35}) D = 0
\end{align*}

Using the first condition, the two eigenvectors are

\begin{align*}
\vec{v}_1 = \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} , \qquad (\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2})
\nonumber \\
\vec{v}_2 = \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} , \qquad (\lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2})
\end{align*}

The (real) general solution of the homogeneous differential equation is

\begin{align*}
\binom{x}{y} = C \binom{1}{\dfrac{- 1 + i \sqrt{35}}{6}} e^{(\frac{3}{2} + i \frac{\sqrt{35}}{2}) t} + C^* \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} e^{(\frac{3}{2} - i \frac{\sqrt{35}}{2}) t}
\end{align*}

Writing ##C = C_1 + i C_2##, we have

\begin{align*}
\binom{x}{y} = (C_1 + i C_2) \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} e^{(\frac{3}{2} + i \frac{\sqrt{35}}{2}) t} + c.c.
\end{align*}

so that

\begin{align*}
\binom{x}{y} = (C_1 + i C_2) \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} (\cos (\frac{\sqrt{35}}{2} t) + i \sin (\frac{\sqrt{35}}{2} t)) e^{3t/2} + c.c.
\end{align*}

or

\begin{align*}
\binom{x}{y} = \binom{C_1 + i C_2}{\dfrac{(-C_1 - C_2 \sqrt{35}) + i (-C_2 + C_1 \sqrt{35})}{6} } (\cos (\frac{\sqrt{35}}{2} t) + i \sin (\frac{\sqrt{35}}{2} t)) e^{3t/2} + c.c.
\end{align*}

or

\begin{align*}
\binom{x}{y} = 2 \binom{C_1 \cos (\frac{\sqrt{35}}{2} t) - C_2 \sin (\frac{\sqrt{35}}{2} t)}
{\dfrac{-C_1 - C_2 \sqrt{35}}{6} \cos (\frac{\sqrt{35}}{2} t) - \dfrac{-C_2 + C_1 \sqrt{35}}{6} \sin (\frac{\sqrt{35}}{2} t)} e^{3t/2}
\end{align*}

Using ##x(0)=1## and ##y(0)=2##,

\begin{align*}
\binom{1}{2} = 2 \binom{ C_1 }{ - \dfrac{ C_1 + C_2 \sqrt{35} }{6} }
\end{align*}

So ##C_1 = \frac{1}{2}##, ##1 = - \dfrac{ C_1 + C_2 \sqrt{35} }{6}##, ##C_2 = - \dfrac{13}{2 \sqrt{35}}##, and ##\dfrac{4}{\sqrt{35}} = \dfrac{ -C_2 + C_1 \sqrt{35} }{6}##.

So finally we have,

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8} .
\end{align*}

The differential equation

\begin{align*}
\frac{d}{dt} \binom{x}{y} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

with initial conditions ##x(0)=1##, ##y(0) = 2## has the solution:

\begin{align*}
\binom{x}{y} = \exp \left\{
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix} t \right\}
\binom{1}{2}
\end{align*}

Write

\begin{align*}
A =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\end{align*}

We will compute ##\exp (At)##.

To that end, consider the eigenvector problem

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D}
= \lambda \binom{C}{D}
\end{align*}

Let's find the eigenvalues:

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2} , \qquad \lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{align*}

As the eigenvalues are the complex conjugate of each other one of the eigenvectors will be proportional to the complex conjugate of the other. The eigenvector equation is

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D} =
(\frac{3}{2} + i \frac{\sqrt{35}}{2}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
4 & 6 \\
-6 & 2
\end{pmatrix}
\binom{C}{D} =
(3 + i \sqrt{35}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
1 - i \sqrt{35} & 6 \\
-6 & -1 - i \sqrt{35}
\end{pmatrix}
\binom{C}{D} = 0
\end{align*}

or

\begin{align*}
(1 - i \sqrt{35}) C + 6 D = 0
\nonumber \\
-6 C - (1 + i \sqrt{35}) D = 0
\end{align*}

Using the first condition, the two normalised eigenvectors are

\begin{align*}
\vec{v}_1 = \frac{1}{\sqrt{7}} \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} , \qquad (\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2})
\nonumber \\
\vec{v}_2 = \frac{1}{\sqrt{7}} \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} , \qquad (\lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2})
\end{align*}

Form the matrix ##U## whose columns are ##\vec{v}_1## and ##\vec{v}_2##. Then

\begin{align*}
\exp ( A t ) & = U U^{-1} \exp ( A t ) U U^{-1}
\nonumber \\
& = U \left( \mathbb{1} + U^{-1} A U t + \frac{1}{2!} U^{-1} A U U^{-1} A U t^2 + \cdots \right) U^{-1}
\nonumber \\
& = U \exp ( \mathcal{D} t ) U^{-1}
\end{align*}

where

\begin{align*}
\mathcal{D} =
\begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}
=
\begin{pmatrix}
\frac{3}{2} + i \frac{\sqrt{35}}{2} & 0 \\
0 & \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{pmatrix} .
\end{align*}

We have

\begin{align*}
U = \frac{1}{6 \sqrt{7}}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\end{align*}

and

\begin{align*}
U^{-1} = \frac{\sqrt{35}}{10 \sqrt{7}}
\begin{pmatrix}
\sqrt{35}-i & -i6 \\
\sqrt{35}+i & i6
\end{pmatrix}
\end{align*}

and

\begin{align*}
\exp (\mathcal{D} t) = e^{3t/2}
\begin{pmatrix}
e^{i \sqrt{35}t/2} & 0 \\
0 & e^{-i \sqrt{35}t/2}
\end{pmatrix}
\end{align*}

We can now compute ##\exp ( At )##,

\begin{align*}
& \exp (At)
\nonumber \\
& =
\frac{e^{3t/2} \sqrt{35}}{420}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\begin{pmatrix}
e^{i \sqrt{35}t/2} & 0 \\
0 & e^{-i \sqrt{35}t/2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{35}-i & -i6 \\
\sqrt{35}+i & i6
\end{pmatrix}
\nonumber \\
& = \frac{e^{3t/2} \sqrt{35}}{420}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\begin{pmatrix}
(\sqrt{35}-i) e^{i \sqrt{35}t/2} & -i6 e^{i \sqrt{35}t/2} \\
(\sqrt{35}+i) e^{-i \sqrt{35}t/2} & i6 e^{-i \sqrt{35}t/2}
\end{pmatrix}
\nonumber \\
& = \frac{e^{\frac{3}{2}t} \sqrt{35}}{420}
\begin{pmatrix}
6 (\sqrt{35}-i) e^{i \frac{\sqrt{35}}{2}t} + 6 (\sqrt{35}+i) e^{-i \frac{\sqrt{35}}{2}t} & -36 i e^{i \frac{\sqrt{35}}{2}t} + i 36 e^{-i \frac{\sqrt{35}}{2}t} \\
36 i e^{i \frac{\sqrt{35}}{2}t} - i 36 e^{-i \frac{\sqrt{35}}{2}t} & i6 (1-i\sqrt{35}) e^{i \sqrt{35}t/2} - i6 (1+i\sqrt{35}) e^{-i \frac{\sqrt{35}}{2}t}
\end{pmatrix}
\nonumber \\
& = \frac{e^{\frac{3}{2}t} \sqrt{35}}{70}
\begin{pmatrix}
(\sqrt{35}-i) e^{i \frac{\sqrt{35}}{2}t} + (\sqrt{35}+i) e^{-i \frac{\sqrt{35}}{2}t} & -6 i e^{i \frac{\sqrt{35}}{2}t} + i 6 e^{-i \frac{\sqrt{35}}{2}t} \\
6 i e^{i \frac{\sqrt{35}}{2}t} - i 6 e^{-i \frac{\sqrt{35}}{2}t} & (i+\sqrt{35}) e^{i \frac{\sqrt{35}}{2}t} +(-i+\sqrt{35}) e^{-i \frac{\sqrt{35}}{2}t}
\end{pmatrix}
\nonumber \\
& = e^{3t/2}
\begin{pmatrix}
\cos (\sqrt{35}t/2) + \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} & 6 \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} \\
- 6 \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} & \cos (\sqrt{35}t/2) - \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}}
\end{pmatrix}
\end{align*}

That is,

\begin{align*}
e^{At} & = e^{3 t/2} \cos (\frac{ \sqrt{35} }{2} t)
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
+ e^{3 t/2} \dfrac{\sin (\frac{ \sqrt{35} }{2} t)}{\sqrt{35}}
\begin{pmatrix}
1 & 6 \\
-6 & -1
\end{pmatrix}
\end{align*}

So

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8}
\end{align*}
 
Last edited:
  • #10
erobz said:
Using the original equations and given initial conditions we find ## x'(0) = 8, y'(0) = -1##
With an old textbook in front of me... Find the auxiliary equation:

$$m^2 -3m+11 = 0 \implies m = \frac{3}{2} \pm \frac{\sqrt{35}i}{2} $$

I think that implies the general solution ( for ##y## or ##x## - same ODE - different i.c. ):

$$ x(t) = y(t) = e^{ \left( \frac{3}{2}t \right) } \left( c_1 \cos \left( \frac{ \sqrt{35} }{2} t \right) + c_2 \sin \left( \frac{ \sqrt{35} }{2} t \right) \right) $$
But different constants in each case, not the same.
 
  • #11
bob012345 said:
But different constants in each case, not the same.
Yeah, I was just being lazy. Thats why I said the general solution is... the constants would be determined for the initial conditions of each. I would think those constants aren't necessarily distinct in the general solution...so I thought I could get away with it?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
919
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K