Linear Transformation l:R3 to R2

Click For Summary
The discussion focuses on proving the existence of a unique linear transformation from R3 to R2 defined by specific vector mappings. Participants express confusion about the notation and the process of finding the associated matrix for the transformation. It is clarified that the transformation can be represented as a 2x3 matrix, and the relationships between the vectors lead to a system of equations that must be solved to find the matrix coefficients. The conversation emphasizes the importance of understanding linear transformations in terms of their properties and the visualization of mapping between different dimensions. Ultimately, the goal is to establish the uniqueness of the transformation and calculate its kernel and specific outputs.
says
Messages
585
Reaction score
12

Homework Statement


Prove that there exists only one linear transformation l: R3 to R2 such that:
l(1,1,0) = (2,1)
l(0,1,2) = (1,1)
l(2,0,0) = (-1,-3)

Find Ker(l), it's basis and dimension. Calculate l(1,2,-2)

Homework Equations

The Attempt at a Solution


I still find linear transformations really confusing. Something about the notation and what is being asked, I don't know...

The matrix associated to these linear transformations should be a 2x3 right?

L=AX

where L = linear transformation
A = matrix associated to linear transformation
X = vector

so, (1,1,0) = A*(2,1)
(0,1,2) = A* (1,1)
(2,0,0) = A*(-1,-3)

And there will be ONE matrix that is associated to all of these transformations? If this is correct, how can I find A?
 
Physics news on Phys.org
I've made a linear combination of
l(1,1,0)
l(0,1,2)
l(2,0,0)

and got the matrix:

[ 1 0 2 ]
[ 1 1 0 ]
[ 0 2 0 ]

so if I use the equation from my post above (L=AX) (I've formatted it below so L = X*A)

[ 1 0 2 ]. .[ 2 -1 ]
[ 1 1 0 ] = [ 1 1 ] * 2x3 MATRIX
[ 0 2 0 ]. .[ 1 -3 ]

I'm not sure how to find the matrix associated to this transformation.
I know Ax = b, and if I find the inverse of A, I can find x, but I'm not sure how to solve the above...
 
says said:

Homework Statement


Prove that there exists only one linear transformation l: R3 to R2 such that:
l(1,1,0) = (2,1)
l(0,1,2) = (1,1)
l(2,0,0) = (-1,-3)

Find Ker(l), it's basis and dimension. Calculate l(1,2,-2)

Homework Equations

The Attempt at a Solution


I still find linear transformations really confusing. Something about the notation and what is being asked, I don't know...

The matrix associated to these linear transformations should be a 2x3 right?

L=AX

where L = linear transformation
A = matrix associated to linear transformation
X = vector

so, (1,1,0) = A*(2,1)
(0,1,2) = A* (1,1)
(2,0,0) = A*(-1,-3)

And there will be ONE matrix that is associated to all of these transformations? If this is correct, how can I find A?

Personally, I would avoid using a matrix and just proceed directly.

If e1=(1,0) and e2 = (0,1) are the standard basis in R2 and f1=(1,0,0), f2 = (0,1,0), f3=(0,0,1) are the standard basis in R3, then you set t1 = L(f1), t2=l(f2), t3 = l(f3) you are given that
l(1,1,0) = l(f1+f2) = t1+t2 = (2,1) = 2e1+e2, so that t1+t2 = 2 e1 + e2.

You can find two other similar equations by using the other two pieces of information about l. So now you will have three linear equations in the three unknowns t1, t2 and t3. Just figure out if they have a unique solution.
 
Ray Vickson said:
Personally, I would avoid using a matrix and just proceed directly.

We're been taught to use matrices. I know I can avoid it but I want to use them just so I can tie it all in with everything else.
 
I tried your way, but I just followed the pattern and don't really understand what I've actually done.

l(1,1,0) = l(f1+f2) = t1+t2 = (2,1) = 2e1+e2 ---> t1+t2 = 2e1+e2
l(0,1,2) = l(f2+2f3) = t2+2t3 = (1,1) = e1 + e2 --> t2+2t3 = e1 + e2
l(0,0,1) = l(f3) = t3 = (-1,3) = -1e1 +3e2 --> t3 = -1e1+3e2
 
Any linear transformation, L, from R3 to R2 can be written as L(x, y, z)= (ax+ by+ cz, dx+ ey+ fz). Because
L(1,1,0) = (2,1) we must have a+ b= 2, d+ e= 1
Because L(0,1,2) = (1,1) we must have b+ 2c= 1, e+ 2f= 1
Because L(2,0,0) = (-1,-3) we must have 2a= -1, 2d= -3.
Solve those 6 equations for a, b, c, d, e, f.

This is exactly the same as writing the linear transformation as the matrix \begin{bmatrix}a & b & c \\ d & e & d\end{bmatrix}.
 
says said:
I tried your way, but I just followed the pattern and don't really understand what I've actually done.

l(1,1,0) = l(f1+f2) = t1+t2 = (2,1) = 2e1+e2 ---> t1+t2 = 2e1+e2
l(0,1,2) = l(f2+2f3) = t2+2t3 = (1,1) = e1 + e2 --> t2+2t3 = e1 + e2
l(0,0,1) = l(f3) = t3 = (-1,3) = -1e1 +3e2 --> t3 = -1e1+3e2 <==== this one is wrong!

l(1,1,0) = (2,1) ==> t1+t2 = 2e1+e2 --- (1)
l(0,1,2) = (1,1) ==> t2+2t3 = e1+e2 ---- (2)
l(2,0,0) = (-1,-3) ==> 2 t1 = -e1-3 e2 --- (3)
Thus, t1 = -(1/2)e1 - (3/2)e2 from (3). Putting this into (1) gives t2 = 2e1 + e2 -[-(1/2)e1 - (3/2) e2] = (5/2)e1 + (5/2) e2 = (5/2)(e1+e2)
Now (2) gives 2t3 = e1+e2 - (5/2)(e1+e2) = -(3/2)(e1+e2) ==> t3 = -(3/4)(e1+e2)

Aside from getting one of the equations wrong, what you are doing is simplicity itself: you are just using the basic properties (actually, definitions) of linear transformations: l(a*v) = a*l(v) for a number 'a' and a vector 'v'; and l(v1+v2) = l(v1) + l(v2) for two vectors v1 and v2. That's all there is to it!
 
  • Like
Likes says
I guess the problem I'm having is visualizing it. I know we can think of linear transformations as say stretching or shrinking something, but it's hard as well to think of something in two dimensions being changed to something in three dimensions, or vise versa. Don't get me started on four dimensions...
 
says said:
I guess the problem I'm having is visualizing it. I know we can think of linear transformations as say stretching or shrinking something, but it's hard as well to think of something in two dimensions being changed to something in three dimensions, or vise versa. Don't get me started on four dimensions...
Well, you need five dimensions to fully visualize the transformation of this problem: three dimensions for the domain, and two more dimensions for the codomain. The transformation maps a vector in space (##\mathbb{R}^3##) to one in the plane (##\mathbb{R}^2##). The only way I can think of to visualize this is with a small three-D region for the domain, and a separate two-D region for the codomain, with a curved arrow going from the first to the second.
 
  • #10
says said:
I still find linear transformations really confusing. Something about the notation and what is being asked, I don't know...

The matrix associated to these linear transformations should be a 2x3 right?

L=AX

where L = linear transformation
A = matrix associated to linear transformation
X = vector
A linear transformation maps vectors in the domain to vectors in the codomain. You could express this as ##\vec{y} = L(\vec{x})##, where ##\vec{x}## is an element of the domain and ##\vec{y}## is an element in the codomain. Writing "L=AX" doesn't make sense.

It turns out that you can associate the linear transformation L with a matrix A where ##\vec{y} = A\vec{x}##.

so, (1,1,0) = A*(2,1)
(0,1,2) = A* (1,1)
(2,0,0) = A*(-1,-3)
Here you have the domain and codomain backwards. You were given, for example, that L(1,1,0) = (2,1). In terms of the matrix A, that means
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$ To allow the matrix multiplication to work out and get a 2x1 result, A has to be 2x3.

And there will be ONE matrix that is associated to all of these transformations? If this is correct, how can I find A?
If you express A the way HallsofIvy did, the one matrix equation above is equivalent to two regular equations, namely
\begin{align*}
2 &= a\cdot 1 + b \cdot 1 + c \cdot 0 \\
1 &= d \cdot 1 + e \cdot 1 + f \cdot 0
\end{align*} Do the same thing with the other pairs of vectors, and you'll end up with six equations in total. What you want to show is that these six equations have only one solution.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
18K
  • · Replies 14 ·
Replies
14
Views
7K
Replies
32
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K