Linearisation of continuity equation (cosmology)

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
Show linearisation of
##\frac{\partial \rho}{\partial t} + 3H \rho + \frac{1}{a} \nabla \cdot (\rho \mathbf{v}) = 0##
is
##\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot (\delta \mathbf{v}) = 0##
where
##\delta \equiv \delta \rho / \bar{\rho}##, ##\rho = \bar{\rho} + \epsilon \delta \rho##, ##\mathbf{v} = \epsilon \delta \mathbf{v}##, and ##\epsilon \ll 1##.
Relevant Equations
N/A
After expanding to first order in ##\epsilon## and subtracting off the unperturbed equation, I get\begin{align*}
\frac{\partial \delta \rho}{\partial t} + 3H \delta \rho + \frac{\bar{\rho}}{a} \nabla \cdot \delta \mathbf{v}=0
\end{align*}I'm not sure how to deal with the ##3H \delta \rho## term. Where does ##H## enter? (##H = \dot{a}/a## is the Hubble parameter).
 
Physics news on Phys.org
The 0'th order eqn is $$ \partial_t \bar\rho ~+~ 3 H \bar\rho ~=~ 0 ~.$$ You must use this in the 1st order eqn.

Additional hint: before writing out the 1st order eqn, compute ##\,\partial_t \left( \frac{\delta\rho}{\bar\rho} \right)## carefully, separately, using the 0'th order eqn.

[Question for other HW helpers: does the above give away too much of the solution in one go? I'm never really sure where the balance lies.]
 
  • Like
Likes vanhees71 and ergospherical
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top