Linearisation of continuity equation (cosmology)

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
Show linearisation of
##\frac{\partial \rho}{\partial t} + 3H \rho + \frac{1}{a} \nabla \cdot (\rho \mathbf{v}) = 0##
is
##\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot (\delta \mathbf{v}) = 0##
where
##\delta \equiv \delta \rho / \bar{\rho}##, ##\rho = \bar{\rho} + \epsilon \delta \rho##, ##\mathbf{v} = \epsilon \delta \mathbf{v}##, and ##\epsilon \ll 1##.
Relevant Equations
N/A
After expanding to first order in ##\epsilon## and subtracting off the unperturbed equation, I get\begin{align*}
\frac{\partial \delta \rho}{\partial t} + 3H \delta \rho + \frac{\bar{\rho}}{a} \nabla \cdot \delta \mathbf{v}=0
\end{align*}I'm not sure how to deal with the ##3H \delta \rho## term. Where does ##H## enter? (##H = \dot{a}/a## is the Hubble parameter).
 
Physics news on Phys.org
The 0'th order eqn is $$ \partial_t \bar\rho ~+~ 3 H \bar\rho ~=~ 0 ~.$$ You must use this in the 1st order eqn.

Additional hint: before writing out the 1st order eqn, compute ##\,\partial_t \left( \frac{\delta\rho}{\bar\rho} \right)## carefully, separately, using the 0'th order eqn.

[Question for other HW helpers: does the above give away too much of the solution in one go? I'm never really sure where the balance lies.]
 
  • Like
Likes vanhees71 and ergospherical
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top