Linearization of this equation / Inverse function

Click For Summary
SUMMARY

The inverse function of the equation y = a * ((exp(-b * x)) + (c * (1 - (exp(-b * x))))) is derived as f^{-1}(x) = (1/b) * ln((a(1-c))/(x-ac)). This conclusion was reached after correcting initial miscalculations regarding the constants involved. The discussion highlights the importance of accurately accounting for constants when deriving inverse functions in mathematical equations.

PREREQUISITES
  • Understanding of exponential functions and their properties
  • Familiarity with logarithmic functions and their applications
  • Basic knowledge of algebraic manipulation for solving equations
  • Experience with inverse functions in mathematics
NEXT STEPS
  • Study the properties of exponential functions in depth
  • Learn about logarithmic identities and their applications in solving equations
  • Explore advanced techniques for deriving inverse functions
  • Investigate numerical methods for fitting experimental data to mathematical models
USEFUL FOR

Mathematicians, students studying calculus or algebra, and researchers working with mathematical modeling of experimental data will benefit from this discussion.

guiismiti
Messages
3
Reaction score
0
Hello,

I need to find the inverse function of the following equation

Code:
y = a * ((exp(-b * x)) + (c * (1 - (exp(-b * x)))))

Where a, b and c are constants.

I have experimental points that fit to this equation and I want to use these values in the inverse funtion to linearize it.

I have tried to use a few tools available online, but the output functions did not work, which made me think if it is actually possible to do it.Can anybody help me?
Thanks in advance.

Edited: solved
Code:
x = (1 / (-b)) * (LN(((a * c) - y) / (a * (c - 1))))
 
Last edited:
Physics news on Phys.org
We are given:

$$f(x)=ae^{-bx}+c\left(1-e^{-bx}\right)=(a-c)e^{-bx}+c$$

To find the inverse function, we can write:

$$x=(a-c)e^{-by}+c$$

Solve for $y$:

$$x-c=(a-c)e^{-by}$$

$$\frac{x-c}{a-c}=e^{-by}$$

$$\ln\left(\frac{x-c}{a-c}\right)=-by$$

$$y=\frac{1}{b}\ln\left(\frac{a-c}{x-c}\right)$$

Thus, we may claim:

$$f^{-1}(x)=\frac{1}{b}\ln\left(\frac{a-c}{x-c}\right)$$
 
MarkFL said:
We are given:

$$f(x)=ae^{-bx}+c\left(1-e^{-bx}\right)=(a-c)e^{-bx}+c$$

To find the inverse function, we can write:

$$x=(a-c)e^{-by}+c$$

Solve for $y$:

$$x-c=(a-c)e^{-by}$$

$$\frac{x-c}{a-c}=e^{-by}$$

$$\ln\left(\frac{x-c}{a-c}\right)=-by$$

$$y=\frac{1}{b}\ln\left(\frac{a-c}{x-c}\right)$$

Thus, we may claim:

$$f^{-1}(x)=\frac{1}{b}\ln\left(\frac{a-c}{x-c}\right)$$

The constant 'a' also multiplies the second term, that's why we got different results.

$$f(x)=ae^{-bx}+ac\left(1-e^{-bx}\right)$$
 
guiismiti said:
The constant 'a' also multiplies the second term, that's why we got different results.

$$f(x)=ae^{-bx}+ac\left(1-e^{-bx}\right)$$

So it does...I missed that...lemme try again:


We are given:

$$f(x)=a\left(e^{-bx}+c\left(1-e^{-bx}\right)\right)=a(1-c)e^{-bx}+ac$$

To find the inverse function, we can write:

$$x=a(1-c)e^{-by}+ac$$

Solve for $y$:

$$x-ac=a(1-c)e^{-by}$$

$$\frac{x-ac}{a(1-c)}=e^{-by}$$

$$\ln\left(\frac{x-ac}{a(1-c)}\right)=-by$$

$$y=\frac{1}{b}\ln\left(\frac{a(1-c)}{x-ac}\right)$$

Thus, we may claim:

$$f^{-1}(x)=\frac{1}{b}\ln\left(\frac{a(1-c)}{x-ac}\right)$$
 
MarkFL said:
So it does...I missed that...lemme try again

Done :)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K