I Linearized Gravity: Bimetric Theory of General Relativity?

  • I
  • Thread starter Thread starter dsaun777
  • Start date Start date
  • Tags Tags
    Gravity
Click For Summary
Linearized gravity, which describes gravitational waves in general relativity, does not constitute a bimetric theory, as it involves a single physical metric expressed as a sum of the flat Minkowski metric and a small perturbation. The distinction lies in the fact that bimetric theories propose two distinct physical metrics, whereas linearized gravity operates with only one. The discussion touches on the potential benefits of bimetric theories, such as exploring different speeds for electromagnetic radiation and gravitational waves, but no specific proponents or references were provided. The conversation also clarifies that adding another dimension to general relativity is unrelated to the principles of linearized gravity. Overall, the thread emphasizes the singular nature of the metric in linearized gravity compared to the dual metrics in bimetric theories.
dsaun777
Messages
296
Reaction score
39
Is the linearized gravity that describes the gravitational waves of general relativity a bimetric theory of gravity? Your adding the flat spacetime metric of minkowski spacetime to the perturbed metric, usually denoted h, to arrive at g.
 
Physics news on Phys.org
dsaun777 said:
Is the linearized gravity that describes the gravitational waves of general relativity a bimetric theory of gravity?
No.

dsaun777 said:
Your adding the flat spacetime metric of minkowski spacetime to the perturbed metric, usually denoted h, to arrive at g.
No, you're expressing the metric g, to linear order, as a sum of the flat metric and the perturbation. That doesn't mean there are two metrics in the theory. It just means you're expressing the single metric in a useful form given that the perturbation is small.
 
PeterDonis said:
No.No, you're expressing the metric g, to linear order, as a sum of the flat metric and the perturbation. That doesn't mean there are two metrics in the theory. It just means you're expressing the single metric in a useful form given that the perturbation is small.
How does this differ from bimetric theory? What's the benefit of a bimetric theory over just adding another dimension to General
Relativity?
 
dsaun777 said:
How does this differ from bimetric theory?
A bimetric theory says there are two different physical metrics. In linearized gravity there is only one physical metric, g.
 
dsaun777 said:
What's the benefit of a bimetric theory over just adding another dimension to General
Relativity?
I'm not sure what you mean by "adding another dimension to General Relativity", since that has nothing to do with what linearized gravity does.

As for the benefits of bimetric theory, you would have to ask its proponents.
 
PeterDonis said:
I'm not sure what you mean by "adding another dimension to General Relativity", since that has nothing to do with what linearized gravity does.

As for the benefits of bimetric theory, you would have to ask its proponents.
Are there any proponents of the theory here? I'm not suggesting linearized gravity does have any to do with higher dimensions.
 
dsaun777 said:
Are there any proponents of the theory here?
Not that I'm aware of. If you can give a specific reference to a paper that describes the bimetric theory of gravity you are interested in, you might have a better chance of getting the attention of someone who knows about it.
 
Bimetric theories have been used to explore the possibility of different speed for EM radiation and gravitational waves, i.e. as test theories. Here is an example:

https://arxiv.org/abs/gr-qc/0403060
 
  • Like
Likes vanhees71 and PeterDonis
PeterDonis said:
Not that I'm aware of. If you can give a specific reference to a paper that describes the bimetric theory of gravity you are interested in, you might have a better chance of getting the attention of someone who knows about it.
No specific paper in general. I just wanted to have some people interject their thoughts on a variable a speed of gravity or speed of light.