Linearized Gravity: Why & How Does it Follow?

  • Thread starter Thread starter kexue
  • Start date Start date
  • Tags Tags
    Gravity
Click For Summary
The discussion focuses on the relationship between the metric tensor g_{ab} and its inverse g^{ab} in the context of linearized gravity. It explains how the expression g_{ab} = η_{ab} + h_{ab} leads to g^{ab} = η^{ab} - h^{ab} up to first order in a small parameter ε. The participants clarify that this relationship holds because the product g_{ab}g^{bc} approximates the identity tensor δ_a^c when considering linear terms. The discussion emphasizes that the negative sign in g^{ab} is necessary to cancel linear terms in ε, ensuring the identity holds. Overall, the conversation provides a clear understanding of the mathematical derivation involved in linearized gravity.
kexue
Messages
195
Reaction score
2
Why and how does from g_{ab}=\eta_{ab}+h_{ab} follow
g^{ab}=\eta^{ab}-h^{ab}?

Don't get the latex right, first equation all indices are supposed to below, second equation all are supposed to be up.

thanks
 
Physics news on Phys.org
I think that you will arrive soon at this property.

If you work with GR, such a metric splitting does not mean introducing a flat space-time since the R is not zero whatever variable change you do.
 
kexue said:
Why and how does from g_{ab}=\eta_{ab}+h_{ab} follow
g^{ab}=\eta^{ab}-h^{ab}?

Don't get the latex right, first equation all indices are supposed to below, second equation all are supposed to be up.

thanks
Because then

<br /> g^{ab}g_{bc} = \delta^a_c<br />

up to first order. Maybe it helps to write

<br /> g_{ab} = \eta_{ab} + \epsilon h_{ab}<br />

then we would like that g_{ab}g^{bc}=\delta_a^c . So up to first order in epsilon you can easily see that g^{bc}=\eta^{bc} - \epsilon h^{bc}
does the job for you:

<br /> g_{ab}g^{bc} = ( \eta_{ab} + \epsilon h_{ab}) (\eta^{bc} - \epsilon h^{bc})<br /> = \delta_a^c + \epsilon(h_{ab}\eta^{bc} - h^{bc}\eta_{ab}) + O(\epsilon^2)<br />

Now, you can raise the indices of h with eta because we are working at linear order in epsilon; every correction to it would give higher order epsilon terms. So we get

<br /> g_{ab}g^{bc} = \delta_a^c + \epsilon (h_a^c - h_a^c) + O(\epsilon^2) = \delta_a^c + O(\epsilon^2) <br />

You could say that the minus-sign in g^{ab} is for cancelling the two factors linear in epsilon in order to get g_{ab}g^{bc}=\delta_a^c. Ofcourse, if you go up higher in order epsilon, say epsilon squared, then all the terms quadratic in epsilon have to cancel to maintain the identity g_{ab}g^{bc}=\delta_a^c.
 
thanks so much, haushofer! crystal-clear now
 
Being material observers, we do not expand with the universe. Our ruler for measuring its increasing size does not expand either - its scale does not change. If I identify the ruler with a metric, then from my perspective it should be invariant both spatially and temporally. If it expanded with the universe, then its size measured with this ruler would be constant. Why then do we use a metric with the spatial scale expanding with the universe and constant temporal scale to measure the...

Similar threads

Replies
71
Views
2K
  • · Replies 1 ·
Replies
1
Views
999
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K