Locus of Line Segment Mid Point Intercept Real/Imaginary Axis

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Line
Click For Summary
SUMMARY

The locus of the midpoint of the line segment intercepting the real and imaginary axes by the line defined by the equation $a\bar{z}+\bar{a}z+b=0$ is determined using complex numbers. Here, $b$ is a real parameter, and $a$ is a fixed complex number with both real and imaginary parts non-zero. The midpoint of the intercepts, calculated as $\left(-\dfrac{b}{4x_0}, -\dfrac{b}{4y_0}\right)$, is derived from the intercepts $\left(-\dfrac{b}{2x_0}, 0\right)$ and $\left(0, -\dfrac{b}{2y_0}\right)$. The calculations involve substituting $z=x+iy$ and simplifying the resulting equations.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with the concept of midpoints in geometry
  • Knowledge of algebraic manipulation of complex equations
  • Ability to interpret real and imaginary components of complex functions
NEXT STEPS
  • Study the geometric interpretation of complex numbers in the Argand plane
  • Learn about the properties of line segments in the context of complex analysis
  • Explore the implications of real and imaginary parameters in complex equations
  • Investigate the applications of midpoints in various mathematical contexts
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in geometric interpretations of complex equations will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
Physics news on Phys.org
Re: Locus of line sagment

jacks said:
We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$
You have an error in signs. The imaginary part should be 0 because $a\bar{z}+\bar{a}z=a\bar{z}+\overline{a\bar{z}}=2\text{Re}(a\bar{z})$.
 
Re: Locus of line sagment

jacks said:
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$i
$(x_0x0- ix_0y+ ixy_0+ y_0y)+ x_0x+ ix_0y- iy_0x+ y_0y)+ b= 0$
$(2x_0x+ 2y_0y)+ i(-x_0y+ xy_0+ x_0y- y_0x)= 2x_0x+ 2y_0y= 0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
jacks said:
Find locus of midpoint of line segment intercept between real and imaginary axis by the line $a\bar{z}+\bar{a}z+b=0,$
where $b$ is a real parameter and $a$ is a fixed complex number such that $\Re(a),\Im(a)\neq 0$
Let $z=x+iy$ and $a=x_o+iy_o$.

Substitute into $a\bar{z}+\bar{a}z+b=0:$
. . $(x_o+iy_o)(x-iy)+(x_o-iy_o)(x+iy)+b\:=\:0$

Expand:
. . . $x_ox - ix_oy + ixy_o + y_oy + x_ox + ix_oy - ixy_o + y_oy + b \:=\:0$

We have: $2x_ox + 2y_oy + b \:=\:0 $

The intercepts are $\left(-\dfrac{b}{2x_o}, 0\right),\;\left(0, -\dfrac{b}{2y_o}\right)$

Their midpoint is: $\left(-\dfrac{b}{4x_o},\,-\dfrac{b}{4y_o}\right)$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K