MHB Locus of Line Segment Mid Point Intercept Real/Imaginary Axis

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Line
juantheron
Messages
243
Reaction score
1
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
Mathematics news on Phys.org
Re: Locus of line sagment

jacks said:
We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$
You have an error in signs. The imaginary part should be 0 because $a\bar{z}+\bar{a}z=a\bar{z}+\overline{a\bar{z}}=2\text{Re}(a\bar{z})$.
 
Re: Locus of line sagment

jacks said:
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$i
$(x_0x0- ix_0y+ ixy_0+ y_0y)+ x_0x+ ix_0y- iy_0x+ y_0y)+ b= 0$
$(2x_0x+ 2y_0y)+ i(-x_0y+ xy_0+ x_0y- y_0x)= 2x_0x+ 2y_0y= 0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
jacks said:
Find locus of midpoint of line segment intercept between real and imaginary axis by the line $a\bar{z}+\bar{a}z+b=0,$
where $b$ is a real parameter and $a$ is a fixed complex number such that $\Re(a),\Im(a)\neq 0$
Let $z=x+iy$ and $a=x_o+iy_o$.

Substitute into $a\bar{z}+\bar{a}z+b=0:$
. . $(x_o+iy_o)(x-iy)+(x_o-iy_o)(x+iy)+b\:=\:0$

Expand:
. . . $x_ox - ix_oy + ixy_o + y_oy + x_ox + ix_oy - ixy_o + y_oy + b \:=\:0$

We have: $2x_ox + 2y_oy + b \:=\:0 $

The intercepts are $\left(-\dfrac{b}{2x_o}, 0\right),\;\left(0, -\dfrac{b}{2y_o}\right)$

Their midpoint is: $\left(-\dfrac{b}{4x_o},\,-\dfrac{b}{4y_o}\right)$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top