MHB Locus of Line Segment Mid Point Intercept Real/Imaginary Axis

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Line
AI Thread Summary
The discussion focuses on finding the locus of the midpoint of a line segment that intercepts the real and imaginary axes, defined by the equation a*z̅ + a̅*z + b = 0, where b is a real parameter and a is a fixed complex number with non-zero real and imaginary parts. The participants derive expressions for the intercepts on the axes and subsequently calculate the midpoint. They identify the midpoint as (-b/(4x₀), -b/(4y₀)). The conversation includes corrections regarding the imaginary part of the equation, emphasizing the importance of accurate sign handling in complex equations. The final result provides a clear geometric interpretation of the midpoint's locus.
juantheron
Messages
243
Reaction score
1
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
Mathematics news on Phys.org
Re: Locus of line sagment

jacks said:
We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$
You have an error in signs. The imaginary part should be 0 because $a\bar{z}+\bar{a}z=a\bar{z}+\overline{a\bar{z}}=2\text{Re}(a\bar{z})$.
 
Re: Locus of line sagment

jacks said:
Find locus of mid point of line segment intercept between real and imaginary axis by the line

$a\bar{z}+\bar{a}z+b=0,$ where $b$ is areal parameter and $a$ is a fixed complex

number such that $\Re(a),\Im(a)\neq 0$

My Attempt:: Let $z=x+iy$ and $a=x_{0}+iy_{0}$, Then put into $a\bar{z}+\bar{a}z+b=0,$

We get $(x_{0}+iy_{0})(x-iy)+(x_{0}-iy_{0})(x+iy)+b=0$i
$(x_0x0- ix_0y+ ixy_0+ y_0y)+ x_0x+ ix_0y- iy_0x+ y_0y)+ b= 0$
$(2x_0x+ 2y_0y)+ i(-x_0y+ xy_0+ x_0y- y_0x)= 2x_0x+ 2y_0y= 0$

So $(2xx_{0}+2yy_{0}+b)+i(2xy_{0}+2x_{0}y) = 0+i\cdot 0$

So $2xx_{0}+2yy_{0}+b=0$ and $2xy_{0}+2x_{0}y=0$

Now How can i solve it after that, Help me, Thanks
 
jacks said:
Find locus of midpoint of line segment intercept between real and imaginary axis by the line $a\bar{z}+\bar{a}z+b=0,$
where $b$ is a real parameter and $a$ is a fixed complex number such that $\Re(a),\Im(a)\neq 0$
Let $z=x+iy$ and $a=x_o+iy_o$.

Substitute into $a\bar{z}+\bar{a}z+b=0:$
. . $(x_o+iy_o)(x-iy)+(x_o-iy_o)(x+iy)+b\:=\:0$

Expand:
. . . $x_ox - ix_oy + ixy_o + y_oy + x_ox + ix_oy - ixy_o + y_oy + b \:=\:0$

We have: $2x_ox + 2y_oy + b \:=\:0 $

The intercepts are $\left(-\dfrac{b}{2x_o}, 0\right),\;\left(0, -\dfrac{b}{2y_o}\right)$

Their midpoint is: $\left(-\dfrac{b}{4x_o},\,-\dfrac{b}{4y_o}\right)$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top