Log of i: Can you get logarithms of imaginary numbers?

  • Thread starter Thread starter theperthvan
  • Start date Start date
  • Tags Tags
    Log
Click For Summary
Logarithms of imaginary numbers, such as log(i), are indeed possible but are multivalued due to the periodic nature of the complex exponential function. The discussion highlights that log(i) can be expressed as (π/2)i + 2nπi for any integer n, indicating multiple solutions. The integration of 1/(1+x^2) can also be approached using complex logarithms, specifically through the formula for arctan in terms of logarithms. The conversation also touches on the complexities and potential fallacies when manipulating logarithms of negative and imaginary numbers. Ultimately, understanding the multivalued nature of logarithms in the complex plane is crucial for accurate calculations.
theperthvan
Messages
182
Reaction score
0
Can you get logarithms of imaginary numbers?

The reason I was wondering is because integrating 1/(1+x^2) WRT x.
I know the answer is arctan(x), but how about breaking it into partial fractions by doing 1/(1-ix)(1+ix)?
 
Mathematics news on Phys.org
Yes, though it's a mutivalued function so it's not as simple as with natural number.
 
Let's try to find log(i), given that log is the inverse function of the exponential defined on the whole complex plane.

So, log(i), whatever it is, should be a number such that exp(log(i))=i. Let's say log(i)=z=x+iy... then z is such that exp(z)=exp(x+iy)=exp(x)exp(iy)=exp(x)[cos(y)+isin(y)]=i. Well, x=0, y=pi/2 does the trick. But so does x=0, y=pi/2+2npi for any integer n. So log(i) is actually a multivalued function.
 
Given a complex number x = a + bi we want to find its logarithm
c + di = ln(a + bi)

Take the exponential of both sides
e^{c + di} = e^{ln(a + bi)}
e^c e^{di} = a + bi
e^c (cos(\frac{d}{\pi}) + i sin(\frac{d}{\pi})) = a + bi

Separating the imaginary and real terms:
e^c cos(\frac{d}{\pi}) = a
e^c sin(\frac{d}{\pi}) = b

To get d, divide one by the other:
\frac{e^c}{e^c} \frac{sin(\frac{d}{\pi})}{cos(\frac{d}{\pi})} = \frac{b}{a}
tan(\frac{d}{\pi})} = \frac{b}{a}
d = tan^{-1}(\frac{b}{a}) \pi

To get c, use the absolute values and Pythagoras:
e^c e^{di} = a + bi
|e^c e^{di}|^2 = |a + bi|^2
|e^c|^2 = a^2 + b^2
e^c = \sqrt{a^2 + b^2}
c = ln(\sqrt{a^2 + b^2})

Note that you can add/subtract 2pi to d to get more solutions, which is a typical side effect of using arctan.
 
Last edited:
I haven't read everything you wrote jet...

but I had an Problem too:

i^0 = 1
i^1 = i
i^2 = -1
i^3 = -i
i^4 = 1
...

It's going on like that,
but if you make de lg of the rationaly numbers...

lg(i^0)=lg(1) ____ lg(i^2)=lg(-1) ____ lg(i^4)=lg(1) ...

then there will be...

0*lg(i)=lg(1) ____ 2*lg(i)=lg(-1) _____ 4*lg(i)=lg(1) ...

____ 0=lg(1) ______ lg(i)=lg(-1)/2 _____ lg(i)=lg(1)/4 ...

NOW IS THAT POSSIBLE?

lg(1)=0 ... That's True...
BUT:
lg(-1)=?

My first Problem...
Just forget it for the moment...

SO: lg(i)=0/4 => lg(i)=0 => lg(i)=lg(1) => i=1 !

Now where was I wrong...?
or is it just that you can't work that way...


as an other example...

i^2= -1
i = -/-1]


i*i = -/ -1 ]*-/ -1 ]

So...

i*i = -/ -1*-1 ]
i*i = -/ 1 ]
i*i = 1 ??

Both time's i=1...
 
MarkUS ViFe said:
I haven't read everything you wrote jet...

but I had an Problem too:

i^0 = 1
i^1 = i
i^2 = -1
i^3 = -i
i^4 = 1
...

It's going on like that,
but if you make de lg of the rationaly numbers...
lg(i^0)=lg(1) ____ lg(i^2)=lg(-1) ____ lg(i^4)=lg(1) ...

then there will be...

0*lg(i)=lg(1) ____ 2*lg(i)=lg(-1) _____ 4*lg(i)=lg(1) ...

____ 0=lg(1) ______ lg(i)=lg(-1)/2 _____ lg(i)=lg(1)/4 ...

NOW IS THAT POSSIBLE?

lg(1)=0 ... That's True...
BUT:
lg(-1)=? -> log(-1)=[π/ln(10)]i and in case your wondering ln(-1)=πi

My first Problem...
Just forget it for the moment...

SO: lg(i)=0/4 => lg(i)=0 => lg(i)=lg(1) => i=1 !

Now where was I wrong...?
or is it just that you can't work that way...


MarkUS ViFe said:
as an other example...

i^2= -1
i = -/-1]


i*i = -/ -1 ]*-/ -1 ]

So...

i*i = -/ -1*-1 ]
i*i = -/ 1 ]
i*i = 1 ??

Both time's i=1...

The fallacy is that √(xy)=√x√y is generally valid only if atleast one of the two numbers x or y is positive. (From Wiki)
 
<br /> \log{(i)} = i \, \left(\frac{\pi}{2} + 2 \, k \, \pi\right), \; k \in \mathbb{Z}<br />
 
theperthvan said:
Can you get logarithms of imaginary numbers?

The reason I was wondering is because integrating 1/(1+x^2) WRT x.
I know the answer is arctan(x), but how about breaking it into partial fractions by doing 1/(1-ix)(1+ix)?
You don't actually need to find ln(i) in order to perform the integration using partial fractions, but I think you will need the following formula:

\tan^{-1}(z) = \frac{1}{2i} \ln \frac{1-iz}{1+iz}

You might want to see if you can derive it (it's not hard).
 
log (i) = ?

log (i) = x

convert imaginary to exponential form...

thus;

(r)(exp^i) => i = (1)exp^(∏/2)i

then substitute to equation...

log (1exp^(∏/2)i)

basic logarithmic law...

log (ab) = log a + log b

therefore...

log (1exp^(∏/2)i) = log 1 + log exp^((∏/2)i)

log 1 = 0

log exp^((∏/2)i) = i log exp^(∏/2) = 0.6822 i

therefore...

log (i) = 0.6822i
 
  • #10
another way to solve log (i)

log (i) = ?

let log (i) = x

therefore...

10^x = i

take the natural logarithm...

ln 10^x = ln i

ln 10^x = x ln 10

ln (i) = ln (1 exp^((∏/2)i) = ln 1 + ln exp^(∏/2)i = (∏/2)i

x ln 10 = (∏/2)i

x = (∏/2)i / ln 10

x = 0.6822 i

same as the answer of my first post...
different solution but one answer...
 
  • #11
michael urbano said:
same as the answer of my first post...
different solution but one answer...

If you want a unique answer you need to pick a branch cut first.
 
  • #12
There are logarithms of i, but in terms of the calculus, your problem asks you to differentiate with respect to a x \in \mathbb{R}, right?

While the complex numbers contains all the real numbers, you may need to justify why you can get a solution of a real variable using a method with complex numbers.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
14K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
671
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
3
Views
2K