Logarithm and Exponent Question

  • Context: MHB 
  • Thread starter Thread starter zekea
  • Start date Start date
  • Tags Tags
    Exponent Logarithm
Click For Summary

Discussion Overview

The discussion revolves around the conversion of logarithmic equations to exponential form, specifically examining the equation m log p (n) = q. Participants explore different interpretations of the conversion process and the application of logarithmic properties, including the power rule.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question whether the exponential form should be p^(q/m) = n or p^(qm) = n, citing confusion over the application of the power rule.
  • One participant references a definition of logarithms, arguing that dividing both sides of the equation by m leads to the conclusion that p^(q/m) = n.
  • Another participant refers to a video that suggests using the power rule leads to a different interpretation, proposing that the correct form should be p^(mn) = n.
  • One participant elaborates on the steps taken to derive p^(q/m) = n, showing the manipulation of the equation and the application of logarithmic definitions.

Areas of Agreement / Disagreement

Participants express differing views on the correct exponential form of the equation, with no consensus reached on which interpretation is correct. Multiple competing views remain regarding the application of logarithmic properties.

Contextual Notes

Participants reference various mathematical identities and properties of logarithms, but there are unresolved assumptions about the application of these rules in the context of the original equation.

zekea
Messages
3
Reaction score
0
I'm confused on this question.

The equation m log p (n) = q can be written in exponential form as..
The answer on the work sheet is p^(q/m)=n but shouldn't it be P^(qm) = n ? According to the power rule? My teacher explained this by writing down for me log p (n) = q / m but I'm confused here
 
Mathematics news on Phys.org
zekea said:
I'm confused on this question.

The equation m log p (n) = q can be written in exponential form as..
The answer on the work sheet is p^(q/m)=n but shouldn't it be P^(qm) = n ? According to the power rule? My teacher explained this by writing down for me log p (n) = q / m but I'm confused here

The definition of the logarithm function id the following:
If $b$ is any number such that $b>0$ and $b\neq 1$ and $x>0$ then,
$$y=\log_b x \ \ \text{ is equivalent to } \ \ b^y=x$$ We have the the equation $q=m\log_p n$.

Dividing both sides by $m$ we get $$\frac{q}{m}=\frac{m\log_p n}{m} \Rightarrow \frac{q}{m}=\log_p n$$

Therefore from the definition for $y=\frac{q}{m}$, $b=p$ and $x=n$ we get $$ p^{\frac{q}{m}}=n$$
 
Last edited by a moderator:
Okay this is what my teacher did but something is confusing me.

Based on Khans' video here https://www.youtube.com/watch?v=Pb9V374iOas
Skip to 4:00
Basically according to the power rule you have Log a (c)^d = bd . He brought the d down to the other side.
So in exp form A^(bd) = C^d so shouldn't the answer be p^(mn) = n rather than P^(q/m) = n ?
 
Using that rule we have the following:
$$q=m\log_p n\Rightarrow q=\log_p n^m$$

Then from the definition we get $p^q=n^m$.

To solve for $n$ we do the following: $$n^m=p^q \Rightarrow \left (n^m\right )^{\frac{1}{m}}=\left (p^q\right )^{\frac{1}{m}} \Rightarrow n^{\frac{m}{m}}=p^{\frac{q}{m}} \Rightarrow n=p^{\frac{q}{m}}$$
 
zekea said:
Okay this is what my teacher did but something is confusing me.

Based on Khans' video here https://www.youtube.com/watch?v=Pb9V374iOas
Skip to 4:00
Basically according to the power rule you have Log a (c)^d = bd . He brought the d down to the other side.
So in exp form A^(bd) = C^d so shouldn't the answer be p^(mn) = n rather than P^(q/m) = n ?

If I was given:

$$\log_a\left(c^d\right)=bd$$

I would first use the identity $\log_a\left(b^c\right)=c\cdot\log_a(b)$ to write:

$$d\cdot\log_a\left(c\right)=bd$$

Next, divide through by $d$:

$$\log_a\left(c\right)=b$$

Finally, convert from logarithmic to exponential form:

$$c=a^b$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
19K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K