MHB How Do We Find the Logical Negation of Statements?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The logical negation of the statement "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is definitively expressed as "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$". Additionally, the negation of the statement "$\forall \epsilon>0 \ \exists \alpha, \beta >0 \ : \ [x\in A, f(x)\leq \alpha, g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$" is correctly formulated as "$\exists \epsilon>0 \ \forall \alpha, \beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha, g(x)\geq \beta\right ) \land h(x)> \epsilon]$". The discussion confirms the validity of these transformations and clarifies the use of conjunction and syntax in logical expressions.

PREREQUISITES
  • Understanding of first-order logic and quantifiers
  • Familiarity with logical negation principles
  • Knowledge of mathematical notation and syntax
  • Basic comprehension of functions and their properties
NEXT STEPS
  • Study the principles of logical quantifiers in depth
  • Explore advanced topics in mathematical logic, such as Gödel's incompleteness theorems
  • Learn about the applications of logical negation in formal proofs
  • Investigate the role of functions in mathematical analysis and their implications in logic
USEFUL FOR

Mathematicians, computer scientists, students of logic, and anyone interested in formal reasoning and mathematical proofs will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :unsure:

It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".

I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".

Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.

I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".

I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}

Is everything correct?

:unsure:
 
Physics news on Phys.org
Yes, everything is correct. It makes sense to write either only commas or only $\land$ in the last formula.
 
Last edited:
mathmari said:
Hey! :unsure:

It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".

I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".

Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.

I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".

I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}

Is everything correct?

:unsure:

Does the above hold for some x or for all x
What do the symbols (:) (,) mean
 
It's a bad idea to overquote. The first part of the quote has nothing to do with $x$.

solakis said:
Does the above hold for some x or for all x
The equivalence holds for each particular $x$, so for all $x$.

solakis said:
What do the symbols :)) (,) mean
I am not sure about the smiley, but comma means conjunction in this context.
 
Sorry i mean ... :
 
In this case colon is just a part of formula syntax: $\forall x:\,A$. There are many variations of this syntax.
 
oh yes $\forall x$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K