Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Looking for Higgs in all the wrong places?

  1. Oct 7, 2007 #1
    If Fermilab's rumored energy bump is just a speed bump on steroids (they have had a good run, up to ~200 GEV?); and if LHC doesn't find Higgs, at it's lower range, i would assume, then perhaps another scenario might be entertained. That is, perhaps it's simply the needle in the haystack problem; is their too much clutter, even for programs searching collisions? Perhaps the atmosphere as a detector for weak interactions (muon showers etc.) would be a more suitable sparse environment, with nature as the acellerator via UHECR. Remember z boson burst speculation?

    Higgs physics at LHC:
    Last edited: Oct 7, 2007
  2. jcsd
  3. Oct 8, 2007 #2


    User Avatar
    Gold Member


    Can you refresh us about it?
  4. Oct 8, 2007 #3

    I think the number of events in the atmosphere would be far too few to do statistics on. In a collider, one can do good physics because there are so many events (luminosity, is what the experimentalists call it).

    There ARE scenarios like what you are talking about, for example the ``hidden valley'' models of Strassler (I think) and company. Basically, if there are singlets which are not charged under the SM gauge group, they will mix with the neutral singlet higgs. When this happens, the decay channels get all screwed up, and you can essentially not see the higgs because it is mostly decaying into hidden sector stuff.

    If such a scenario were true (not likely, but anything is possible), we would see no SUSY, and no higgs, and nothing but a ****load of top quarks. It would be a long time before we had enough statistics to straighten everything out.

    Such scenarios are scary, because they could put a major damper on ALL high energy physics for quite some time.
  5. Oct 8, 2007 #4


    User Avatar
    Science Advisor

    "Basically, if there are singlets which are not charged under the SM gauge group"

    But one should see this singlet state (either at the LHC or ILC), so at least that would account for the nonobservation of a Higgs.
  6. Oct 8, 2007 #5
    Not always. It could show up as just missing energy, depending on how much mixing occurs. And there's a LOT of things which show up as missing energy.
  7. Oct 9, 2007 #6
    Using google search engine in general is efficacious in searching the ArXiv and other literature. For example: z boson bursts

    Title: Z-bursts from the Virgo cluster
    Authors: Andreas Ringwald, Thomas J. Weiler, Yvonne Y. Y. Wong
    Categories: physics.astro-ph Astrophysics (physics.hep-ph High Energy Physics - Phenomenology)
    Comments: 13 pages, 8 figures, RevTeX; v2 matches published version
    Report number: DESY 05-053
    Journal reference: Phys.Rev. D72 (2005) 043008
    Abstract: Resonant annihilation of ultra-high energy cosmic neutrinos (UHECnu) on the cosmic neutrino background (CnuB) into Z bosons--the Z-burst mechanism--and its associated absorption and emission phenomenology provide a unique, albeit indirect, probe of the CnuB in its present state. In this paper, we examine the implications of gravitational clustering of the CnuB in nearby galaxy clusters for the Z-burst phenomenology. In particular, we study the emission features of the Z-decay products originating from the Virgo cluster, and the potential of future cosmic ray experiments to observe clustering-enhanced Z-burst rates. We find that a detector with an exposure equivalent to three years of observations at the Extreme Universe Space Observatory (EUSO) will very likely measure these enhanced rates together with the associated UHECnu flux, provided that the latter saturates current observational limits and the neutrino masses are quasi-degenerate, m_nu_i < 0.1 eV. In the case of UHECnu fluxes below the electromagnetic cascade limit, or a hierarchical neutrino mass spectrum, an experimental sensitivity exceeding that of EUSO by at least two orders of magnitude is required to detect the clustering enhancements with any certainty.
  8. Oct 9, 2007 #7


    User Avatar
    Science Advisor
    Gold Member

    I'm not familiar with any published studies that conclude there is any missing energy, BentheMan. This would be a significant result for ST. Please clarify.
  9. Oct 9, 2007 #8
  10. May 26, 2008 #9
    Particle detector on Moon?

    If LHC etc. are bumping up against limits of empiricism, due to too much luminosity etc., and the atmosphere is a much less dense medium or passive detection, perhaps there is a third possibility. That is, could one utilize say 100 ft of moon rock, or perhaps just a ft (?) of glass substance etc. of a given extent and depth? And sensors in the substance or beneath. Cosmic rays of protons, nuclei etc. of course would be the source from AGN or supernovae.
  11. May 27, 2008 #10


    User Avatar
    Science Advisor

    Speaking of which, at Planck 2008 (*the* conference for testable beyond the standard model physics) the entire running theme was on perfectly plausible methods to obfuscate the physics which we should otherwise see at the LHC.

    Strassler et al and the like were in full form, and we got to see ever increasing amounts of hidden sector proposals and so forth. Extra forces, unparticle physics, runaway degrees of freedom etc etc.

    Overall, the conference served to remind everyone the nasty little fact of high energy physics. Namely, why is nature trying so hard to keep phenomenologists with a steady pay check (or read another way, why is she hiding her secrets so efficiently).
  12. May 27, 2008 #11

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2017 Award

    First, if the problem is "clutter" (whatever that is), wouldn't that argue for having the collisions in a highly instrumented part of the world, where one could detect and measure exactly what's going on? The collider detectors pretty much fit the bill. Moving to a less well-instrumented medium is moving away from the direction that the very premise suggests.

    Second, I see no actual proposal for detection. How exactly does a cosmic ray event with a Higgs in it look different from any other cosmic ray event? How many ordinary cosmic ray events mimic this signature? Until you have this, you don't even really have an idea.

    Finally, I think the idea that a couple guys on the internet somehow know better than the hundreds of people actually doing the experiment - and that they are doing it all wrong - is pretty doggone arrogant.
  13. May 28, 2008 #12
    Analysis vs empiricism

    Even for any limits to empircism, analysis has, and can, go along way. For example,
    mathematics has been everywhere it would almost seem; so is it just picking and choosing from mathematics? Other examples: GRT was essentially all analysis until the 60's. And g.w. phenonoma has been mostly by analysis for near the sources. Analysis, in the general sense, has almost no limit. p.s. for any conceived moon based cosmic wave detector, various substances could be explored here in accelerators. For example, put slabs of various substances, with varying thickness, to ascertain interactions induced at a lower energy of course, to get an idea for suitability. Then use a 6 ft by 6 ft mosaic of various substances and thickness as a medium with detectors embedded or below.

    Some look at things and ask why
    While others dream of things that never were,
    and ask, why not. G.B. Shaw
  14. May 28, 2008 #13


    User Avatar
    Science Advisor

    I have no idea what you are talking about
  15. May 28, 2008 #14


    User Avatar
    Gold Member

    I am still interested on the "z boson burst speculation".
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook