http://arxiv.org/abs/0802.0896
Topology change in causal quantum gravity
J. Ambjorn, R. Loll, Y. Watabiki, W. Westra, S. Zohren
4 pages, proceedings of the workshop JGRG 17 (Nagoya, Japan, December 2007)
(Submitted on 6 Feb 2008)
"The role of topology change in a fundamental theory of quantum gravity is still a matter of debate. However, when regarding string theory as two-dimensional quantum gravity, topological fluctuations are essential. Here we present a third quantization of two-dimensional surfaces based on the method of causal dynamical triangulation (CDT). Formally, our construction is similar to the c = 0 non-critical string field theory developed by Ishibashi, Kawai and others, but physically it is quite distinct. Unlike in non-critical string theory the topology change of spatial slices is well controlled and regulated by Newton's constant."
http://arxiv.org/abs/0802.0864
Area-angle variables for general relativity
Bianca Dittrich, Simone Speziale
7 pages, 1 figure
(Submitted on 6 Feb 2008)
"We introduce a modified Regge calculus for general relativity on a triangulated four dimensional Riemannian manifold where the fundamental variables are areas and a certain class of angles. These variables satisfy constraints which are local in the triangulation. We expect the formulation to have applications to classical discrete gravity and non-perturbative approaches to quantum gravity."
http://arxiv.org/abs/0802.0880
Entanglement Entropy in Loop Quantum Gravity
William Donnelly
4 pages
(Submitted on 6 Feb 2008)
The entanglement entropy between quantum fields inside and outside a black hole horizon is a promising candidate for the microscopic origin of black hole entropy. We show that the entanglement entropy may be defined in loop quantum gravity, and compute its value for spin network states. The entanglement entropy for an arbitrary region of space is expressed as a sum over punctures where the spin network intersects the region's boundary. Our result agrees asymptotically with results previously obtained from the isolated horizon framework, and we give a justification for this agreement. We conclude by proposing a new method for studying corrections to the area law and its implications for quantum corrections to the gravitational action."
http://arxiv.org/abs/0802.0719
A String Field Theory based on Causal Dynamical Triangulations
J. Ambjorn, R. Loll, Y. Watabiki, W. Westra, S. Zohren
29 pages, 4 figures
(Submitted on 5 Feb 2008)
"We formulate the string field theory in zero-dimensional target space corresponding to the two-dimensional quantum gravity theory defined through Causal Dynamical Triangulations. This third quantization of the quantum gravity theory allows us in principle to calculate the transition amplitudes of processes in which the topology of space changes in time, and to include non-trivial topologies of space-time. We formulate the corresponding Dyson-Schwinger equations and illustrate how they can be solved iteratively."
http://arxiv.org/abs/0802.0767
A fundamental length as a candidate for dark energy: a DSR inspired FRW spacetime
N. Khosravi, H. R. Sepangi
8 pages, to appear in PLA
(Submitted on 6 Feb 2008)
"We show that the existence of a fundamental length, introduced in Deformed Special Relativity (DSR) inspired minisuper (phase-) space, causes the behavior of the scale factor of the universe to change from that of a universe filled with dust to an accelerating universe driven by a cosmological constant."
http://arxiv.org/abs/0802.0702
Strategies for Determining the Nature of Dark Matter
Dan Hooper, Edward A. Baltz
25 pages, 5 figures, Review intended for the Annual Review of Nuclear and Particle Science
(Submitted on 5 Feb 2008)
"In this review, we discuss the role of the various experimental programs taking part in the broader effort to identify the particle nature of dark matter. In particular, we focus on electroweak scale dark matter particles and discuss a wide range of search strategies being carried out and developed to detect them. These efforts include direct detection experiments, which attempt to observe the elastic scattering of dark matter particles with nuclei, indirect detection experiments, which search for photons, antimatter and neutrinos produced as a result of dark matter annihilations, and collider searches for new TeV-scale physics. Each of these techniques could potentially provide a different and complementary set of information related to the mass, interactions and distribution of dark matter. Ultimately, it is hoped that these many different tools will be used together to conclusively identify the particle or particles that constitute the dark matter of our universe."
http://arxiv.org/abs/0802.0013
Cosmic Neutrinos
Chris Quigg
27 pages, 16 figures, lecture at 2007 SLAC Summer Institute
(Submitted on 31 Jan 2008)
"I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance."