Loop-and-allied QG bibliography

  • Thread starter Thread starter marcus
  • Start date Start date
  • Tags Tags
    Bibliography
  • #1,831


http://arxiv.org/abs/1211.1354
An Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era
Ivan Agullo, Abhay Ashtekar, William Nelson
(Submitted on 6 Nov 2012)
Cosmological perturbations are generally described by quantum fields on (curved but) classical space-times. While this strategy has a large domain of validity, it can not be justified in the quantum gravity era where curvature and matter densities are of Planck scale. Using techniques from loop quantum gravity, the standard theory of cosmological perturbations is extended to overcome this limitation. The new framework sharpens conceptual issues by distinguishing between the true and apparent trans-Planckian difficulties and provides sufficient conditions under which the true difficulties can be overcome within a quantum gravity theory. In a companion paper, this framework is applied to the standard inflationary model, with interesting implications to theory as well as observations.
50 pages. This is first of the two detailed papers on which arXiv 1209.1609 (PRL at press) is based

http://arxiv.org/abs/1211.1244
Schwinger-Dyson Equations in Group Field Theories of Quantum Gravity
Thomas Krajewski
(Submitted on 6 Nov 2012)
In this talk, we elaborate on the operation of graph contraction introduced by Gurau in his study of the Schwinger-Dyson equations. After a brief review of colored tensor models, we identify the Lie algebra appearing in the Schwinger-Dyson equations as a Lie algebra associated to a Hopf algebra of the Connes-Kreimer type. Then, we show how this operation also leads to an analogue of the Wilsonian flow for the effective action. Finally, we sketch how this formalism may be adapted to group field theories.
6 pages. Talk given at "The XXIX International Colloquium on Group-Theoretical Methods in Physics", Chern Institute of Mathematics August 2012, submitted to the conference proceedings
 
Last edited:
Physics news on Phys.org
  • #1,832


http://arxiv.org/abs/1211.1131

A Construct of Dynamics, Space and Gravity from Loops

Madhavan Venkatesh
(Submitted on 6 Nov 2012)
An attempt is made to construct space and obtain dynamics from Loop Algebras and their elements. We define three new products between loops namely 'Vertical Product', 'Horizontal Product' and 'Total Product'. As for the dynamics, we obtain corresponding "velocity" and "canonical momenta" from it. Also, we build a new "Energy Variable" that is dependent on the velocity and momentum alone. Then, we apply the loop constructs to General Relativity and arrive at the Einstein Field Equations, although presented in a different form. The key feature of this formalism is that the metric is not arbitarized as prevalent on the space beforehand but is rather induced by restricting the Killing Form to the Cartan Sub-algebra of the underlying Lie Algebra. Then we go on to show that "Dynamics is Structure" and that both do not depend on length or time.
 
  • #1,833


http://arxiv.org/abs/1211.2166
The spin connection of twisted geometry
Hal M. Haggard, Carlo Rovelli, Francesca Vidotto, Wolfgang Wieland
(Submitted on 9 Nov 2012)
Twisted geometry is a piecewise-flat geometry less rigid than Regge geometry. In Loop Gravity, it provides the classical limit for each step of the truncation utilized in the definition of the quantum theory. We define the torsionless spin-connection of a twisted geometry. The difficulty given by the discontinuity of the triad is addressed by interpolating between triads. The curvature of the resulting spin connection reduces to the Regge curvature in the case of a Regge geometry.
5 pages, 2 figures
 
Last edited:
  • #1,834


http://arxiv.org/abs/1211.2702
Dynamical evaporation of quantum horizons
Daniele Pranzetti
(Submitted on 12 Nov 2012)
We describe the black hole evaporation process driven by the dynamical evolution of the quantum gravitational degrees of freedom resident at the horizon, as identified by the Loop Quantum Gravity kinematics. Using a parallel with the Brownian motion, we interpret the first law of quantum dynamical horizon in terms of a fluctuation-dissipation relation applied to this fundamental discrete structure. In this way, the horizon evolution is described in terms of relaxation to an equilibrium state balanced by the excitation of Planck scale constituents of the horizon. We investigate the final stage of the evaporation process and show how, from this setting, the emergence of several conservative scenarios for the information paradox can be microscopically derived. Namely, the leakage of part of the horizon quantum geometry information prior to the Planckian phase and the stabilization of the hole surface shrinkage forming a massive remnant, which can eventually decay, are described.
14 pages, 2 figures

http://arxiv.org/abs/1211.2731
Horizon thermodynamics and composite metrics
Lorenzo Sindoni
(Submitted on 12 Nov 2012)
We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.
11 pages, 1 figure
 
  • #1,835


not QG but possibly of interest to quantum relativists:
http://arxiv.org/abs/1211.3880
The symplectic 2-form for gravity in terms of free null initial data
Michael P. Reisenberger
(Submitted on 16 Nov 2012)
A hypersurface formed of two null sheets, or "light fronts", swept out by the future null normal geodesics emerging from a common spacelike 2-disk can serve as a Cauchy surface for a region of spacetime. Already in the 1960s free (unconstrained) initial data for general relativity were found for such hypersurfaces. Here an expression is obtained for the symplectic 2-form of vacuum general relativity in terms of such free data. This can be done, even though variations of the geometry do not in general preserve the nullness of the initial hypersurface, because of the diffeomorphism gauge invariance of general relativity. The present expression for the symplectic 2-form has been used previously to calculate the Poisson brackets of the free data.
44 pages, 2 figures

http://arxiv.org/abs/1211.3816
Is a tabletop search for Planck scale signals feasible?
Jacob D. Bekenstein
(Submitted on 16 Nov 2012)
Quantum gravity theory is untested experimentally. Could it be tested with tabletop experiments? While the common feeling is pessimistic, a detailed inquiry shows it possible to sidestep the onerous requirement of localization of a probe on Planck length scale. I suggest a tabletop experiment which, given state of the art ultrahigh vacuum and cryogenic technology, could already be sensitive enough to detect Planck scale signals. The experiment combines a single photon's degree of freedom with one of a macroscopic probe to test Wheeler's conception of "spacetime foam", the assertion that on length scales of the order Planck's, spacetime is no longer a smooth manifold. The scheme makes few assumptions beyond energy and momentum conservations, and is not based on a specific quantum gravity scheme.
8 pages, 2 figures
 
  • #1,836


http://arxiv.org/abs/1211.4183
Loop quantum Brans-Dicke cosmology
Xiangdong Zhang, Yongge Ma
(Submitted on 18 Nov 2012)
The spatially flat and isotropic cosmological model of Brans-Dicke theory with coupling parameter ω ≠ -3/2 is quantized by the approach of loop quantum cosmology. An interesting feature of this model is that, although the Brans-Dicke scalar field is non-minimally coupled with curvature, it can still play the role of an emergent time variable. In the quantum theory, the classical differential equation which represents cosmological evolution is replaced by a quantum difference equation. The effective Hamiltonian and modified dynamical equations of loop quantum Brans-Dicke cosmology are also obtained, which lay a foundation for the phenomenological investigation to possible quantum gravity effects in cosmology. The effective equations indicate that the classical big bang singularity is again replaced by a quantum bounce in loop quantum Brans-Dicke cosmology.
11pages

http://arxiv.org/abs/1211.4151
Lectures on renormalization and asymptotic safety
Sandor Nagy
(Submitted on 17 Nov 2012)
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross-Neveu model, the nonlinear σ model, the sine-Gordon model, and the model of quantum Einstein gravity. We also give a detailed analysis of infrared behavior of the models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The phase spaces of these models show several similar properties, namely the models has the same phase and fixed point structure. These results can only be uncovered by the functional renormalization group method.
32 pages, 20 figures. Based on the talk presented at the Theoretical Physics School on Quantum Gravity, Szeged, Hungary, 27-31 August 2012
 
  • #1,837


http://arxiv.org/abs/1211.4807
Holonomy-flux spinfoam amplitude
Claudio Perini
(Submitted on 20 Nov 2012)
We introduce a holomorphic representation for the Lorentzian EPRL spinfoam on arbitrary 2-complexes. The representation is obtained via the Ashtekar-Lewandowski-Marolf-Mourao-Thiemann heat kernel coherent state transform. The new variables are classical holonomy-flux phase space variables (h,X) ≈ T*SU(2) of Hamiltonian loop quantum gravity prescribing the holonomies of the Ashtekar connection A = Γ + γK, and their conjugate gravitational fluxes. For small heat kernel 'time' the spinfoam amplitude is peaked on classical space-time geometries, where at most countably many curvatures are allowed for non-zero Barbero-Immirzi parameter. We briefly comment on the possibility to use the alternative flipped classical limit.
33 pages

not QG but possibly of interest:
http://arxiv.org/abs/1211.4848
Scrutinizing the Cosmological Constant Problem and a possible resolution
Denis Bernard, André LeClair
(Submitted on 20 Nov 2012)
We suggest a new perspective on the Cosmological Constant Problem by scrutinizing its standard formulation. In classical and quantum mechanics without gravity, there is no definition of the zero point of energy. Furthermore, the Casimir effect only measures how the vacuum energy changes as one varies a geometric modulus. This leads us to propose that the physical vacuum energy in a Friedman-Lemaitre-Robertson-Walker expanding universe only depends on the time variation of the scale factor a(t). Equivalently, requiring that empty Minkowski space is stable is a principle that fixes the ambiguity in the zero point energy. We describe two different choices of vacuum, one of which is consistent with the current universe consisting only of matter and vacuum energy. The resulting vacuum energy density is proportional to (kcH0)2, where kc is a momentum cut-off and H0 is the Hubble constant; for a cut-off close to the Planck scale, values of the vacuum energy density in agreement with astrophysical measurements are obtained. Another choice of vacuum is more relevant to the early universe consisting of only radiation and vacuum energy, and we suggest it as a possible model of inflation.
22 pages, 1 figure
 
Last edited:
  • #1,838


http://arxiv.org/abs/1211.5024
Loop quantum modified gravity and its cosmological application
Xiangdong Zhang, Yongge Ma
(Submitted on 21 Nov 2012)
A general nonperturbative loop quantization procedure for metric modified gravity is reviewed. As an example, this procedure is applied to scalar-tensor theories of gravity. The quantum kinematical framework of these theories is rigorously constructed. Both the Hamiltonian and master constraint operators are well defined and proposed to represent quantum dynamics of scalar-tensor theories. As an application to models, we set up the basic structure of loop quantum Brans-Dicke cosmology. The effective dynamical equations of loop quantum Brans-Dicke cosmology are also obtained, which lay a foundation for the phenomenological investigation to possible quantum gravity effects in cosmology.
18pages.
 
Last edited:
  • #1,839


http://arxiv.org/abs/1211.5180
Path Integral of Bianchi I models in Loop Quantum Cosmology
Xiao Liu, Fei Huang, Jian-Yang Zhu
(Submitted on 22 Nov 2012)
A path integral formulation of the Bianchi I models containing a massless scalar field in loop quantum cosmology is constructed. Following the strategy used in the homogenous and isotropic case, the calculation is extended to the simplest non-isotropic models according to the μ-bar and μ'-bar scheme. It is proved from the path integral angle that the quantum dynamic lacks the full invariance with respect to fiducial cell scaling in the μ-bar scheme, but it does not in the μ'-bar scheme. The investigation affirms the equivalence of the canonical approach and the path integral approach in loop quantum cosmology.
10 pages

http://arxiv.org/abs/1211.5310
Power spectrum and anisotropy of super inflation in loop quantum cosmology
Xiao-Jun Yue, Jian-Yang Zhu
(Submitted on 22 Nov 2012)
We investigate the scalar mode of perturbation of super inflation in the version of loop quantum cosmology in which the gauge invariant holonomy corrections are considered. Given a background solution, we calculate the power spectrum of the perturbation in the classical and LQC conditions. Then we compute the anisotropy originated from the perturbation. It is found that in the presence of the gauge invariant holonomy corrections the power spectrum is exponentially blue and the anisotropy also grows exponentially in the epoch of super inflation.
12 pages,4 figures

My note: Jian-Yang Zhu is at Beijing Normal (BNU) same department as Prof. Yongge Ma.
 
Last edited:
  • #1,840


http://arxiv.org/abs/1211.5878
Frequently asked questions about Shape Dynamics
H. Gomes, T. Koslowski
(Submitted on 26 Nov 2012)
Barbour's interpretation of Mach's principle led him to postulate that gravity should be formulated as a dynamical theory of spatial conformal geometry, or in his terminology, "shapes." Recently, it was shown that the dynamics of General Relativity can indeed be formulated as the dynamics of shapes. This new Shape Dynamics theory, unlike earlier proposals by Barbour and his collaborators, implements local spatial conformal invariance as a gauge symmetry that replaces refoliation invariance in General Relativity. It is the purpose of this paper to answer frequent questions about (new) Shape Dynamics, such as its relation to Poincaré invariance, General Relativity, Constant Mean (extrinsic) Curvature gauge, earlier Shape Dynamics, and finally the conformal approach to the initial value problem of General Relativity. Some of these relations can be clarified by considering a simple model: free electrodynamics and its dual shift symmetric formulation. This model also serves as an example where symmetry trading is used for usual gauge theories.
19 pages

http://arxiv.org/abs/1211.5939
Action principle for the connection dynamics of scalar-tensor theories
Zhenhua Zhou, Haibiao Guo, Yu Han, Yongge Ma
(Submitted on 26 Nov 2012)
A first-order action for scalar-tensor theories of gravity is proposed. The Hamiltonian analysis of the action gives a connection dynamical formalism, which is equivalent to the connection dynamics derived from the geometrical dynamics by canonical transformations. Therefore, the action principle underlying loop quantum scalar-tensor theories is recovered.
5 pages

http://arxiv.org/abs/1211.5714
The quantum geometry of tensorial group field theories
Daniele Oriti
(Submitted on 24 Nov 2012)
We remark the importance of adding suitable pre-geometric content to tensor models, obtaining what has recently been called tensorial group field theories, to have a formalism that could describe the structure and dynamics of quantum spacetime. We also review briefly some recent results concerning the definition of such pre-geometric content, and of models incorporating it.
6 pages; contribution to the proceedings of The XXIX International Colloquium on Group-Theoretical Methods in Physics, August 20-26, 2012, Chern Institute of Mathematics, Tianjin, China
 
  • #1,841


http://arxiv.org/abs/1211.6269
The Matter Bounce Scenario in Loop Quantum Cosmology
Edward Wilson-Ewing
(Submitted on 27 Nov 2012)
In the matter bounce scenario, a dust-dominated contracting space-time generates scale-invariant perturbations that, assuming a nonsingular bouncing cosmology, propagate to the expanding branch and set appropriate initial conditions for the radiation-dominated era. Since this scenario depends on the presence of a bounce, it seems appropriate to consider it in the context of loop quantum cosmology where a bouncing universe naturally arises. It turns out that quantum gravity effects play an important role beyond simply providing the bounce. Indeed, quantum gravity corrections to the Mukhanov-Sasaki equations significantly modify some of the results obtained in a purely classical setting: while the predicted spectra of scalar and tensor perturbations are both almost scale-invariant with identical small red tilts in agreement with previous results, the tensor to scalar ratio is now expected to be r≈ 9 x 10-4, which is much smaller than the original classical prediction. Finally, for the predicted amplitude of the scalar perturbations to agree with observations, the critical density in loop quantum cosmology must be of the order ρcrit ~ 10-9 ρPlanck.
8 pages

[My comment: !]

brief mention:
http://arxiv.org/abs/1211.6337
The Cosmological Constant
Alex Harvey
(Submitted on 23 Nov 2012)
Contrary to popular mythology, Einstein did not invent the cosmological constant just in order construct his model universe. He discussed it earlier in "The Foundations of General Relativity" in connection with the proper structure of the source-free field equations. There he dismissed it as arbitrary and unnecessary. It was later that he found its inclusion to be essential to the construction of his model.
3 pages
 
Last edited:
  • #1,842


http://arxiv.org/abs/1211.6913
Black Hole Entanglement and Quantum Error Correction
Erik Verlinde, Herman Verlinde
(Submitted on 29 Nov 2012)
It was recently argued by Almheiri et al that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. The reconstruction makes use of the formalism of quantum error correcting codes, and works for black hole states whose entanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the "firewall" regime of maximally mixed black hole states.
 
  • #1,843


http://arxiv.org/abs/1211.7311
Pentahedral volume, chaos, and quantum gravity
Hal M. Haggard
(Submitted on 30 Nov 2012)
We show that chaotic classical dynamics associated to the volume of discrete grains of space leads to quantal spectra that are gapped between zero and nonzero volume. This strengthens the connection between spectral discreteness in the quantum geometry of gravity and tame ultraviolet behavior. We complete a detailed analysis of the geometry of a pentahedron, providing new insights into the volume operator and evidence of classical chaos in the dynamics it generates. These results reveal an unexplored realm of application for chaos in quantum gravity.
5 pages, 4 figures
 
  • #1,844


http://arxiv.org/abs/1211.7122
Patterns in the fabric of nature
Steven Weinstein
(Submitted on 29 Nov 2012)
From classical mechanics to quantum field theory, the physical facts at one point in space are held to be independent of those at other points in space. I propose that we can usefully challenge this orthodoxy in order to explain otherwise puzzling correlations at both cosmological and microscopic scales.


http://arxiv.org/abs/1211.7081
The Universe is not a Computer
Ken Wharton
(Submitted on 29 Nov 2012)
When we want to predict the future, we compute it from what we know about the present. Specifically, we take a mathematical representation of observed reality, plug it into some dynamical equations, and then map the time-evolved result back to real-world predictions. But while this computational process can tell us what we want to know, we have taken this procedure too literally, implicitly assuming that the universe must compute itself in the same manner. Physical theories that do not follow this computational framework are deemed illogical, right from the start. But this anthropocentric assumption has steered our physical models into an impossible corner, primarily because of quantum phenomena. Meanwhile, we have not been exploring other models in which the universe is not so limited. In fact, some of these alternate models already have a well-established importance, but are thought to be mathematical tricks without physical significance. This essay argues that only by dropping our assumption that the universe is a computer can we fully develop such models, explain quantum phenomena, and understand the workings of our universe.

http://arxiv.org/abs/1211.7337
A linear theory underlying quantum mechanics
Casey Blood
(Submitted on 30 Nov 2012)
Linearity allows several versions of reality to simultaneously exist in the state vector. But it implies that there is no interaction between versions, and that there will never be perception of more than one version. It also implies, in conjunction with group representation theory, that the particle-like properties of mass, energy, momentum, spin and charge are attributes of the state vectors. These results can be used to show there is no evidence for the objective existence of particles. The properties of the wave function are sufficient to explain all the particle-like properties of matter. Representation theory is also extensively employed in the Standard Model, with gauge fields transforming as representations of the internal symmetry group. And when applied to the permutation group, it is essential for understanding symmetric and antisymmetric states. In fact all of quantum mechanics is set up exactly as if it were the representation of an underlying pre-representational theory. A linear equation structure for the underlying theory is suggested, and it is shown in outline how quantum field theory emerges as a representational form of the pre-representational theory.

http://arxiv.org/abs/1211.7070
Nonviolent nonlocality
Steven B. Giddings
(Submitted on 29 Nov 2012)
If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of information transfer, and should provide important guides to discovery of the principles and mechanisms of the more fundamental nonlocal mechanics.
 
  • #1,845


http://arxiv.org/abs/1212.0454
Gravity can be neither classical nor quantized
Sabine Hossenfelder
(Submitted on 3 Dec 2012)
I argue that it is possible for a theory to be neither quantized nor classical. We should therefore give up the assumption that the fundamental theory which describes gravity at shortest distances must either be quantized, or quantization must emerge from a fundamentally classical theory. To illustrate my point I will discuss an example for a theory that is neither classical nor quantized, and argue that it has the potential to resolve the tensions between the quantum field theories of the standard model and general relativity.
7 pages, third prize in the 2012 FQXi essay contest "Which of our basic physical assumptions are wrong?"

http://arxiv.org/abs/1212.0371
Not on but of
Olaf Dreyer
(Submitted on 3 Dec 2012)
In physics we encounter particles in one of two ways. Either as fundamental constituents of the theory or as emergent excitations. These two ways differ by how the particle relates to the background. It either sits on the background, or it is an excitation of the background. We argue that by choosing the former to construct our fundamental theories we have made a costly mistake. Instead we should think of particles as excitations of a background. We show that this point of view sheds new light on the cosmological constant problem and even leads to observable consequences by giving a natural explanation for the appearance of MOND-like behavior. In this context it also becomes clear why there are numerical coincidences between the MOND acceleration parameter, the cosmological constant and the Hubble parameter.
9 pages. This article received a forth prize in the 2012 FQXi essay contest "Questioning the Foundations". More articles from this contest can be found on the FQXi website at fqxi.org

brief mention:
http://arxiv.org/abs/1212.0500
Vector fields on C*-algebras, semigroups of endomorphisms and gauge groups
Innocenti Maresin
 
  • #1,846


Not really related!. But interesting.

http://arxiv.org/abs/1212.0107
On the Foundations of the Theory of Evolution
Diederik Aerts, Stan Bundervoet, Marek Czachor, Bart D'Hooghe, Liane Gabora, Philip Polk, Sandro Sozzo
(Submitted on 1 Dec 2012)
Darwinism conceives evolution as a consequence of random variation and natural selection, hence it is based on a materialistic, i.e. matter-based, view of science inspired by classical physics. But matter in itself is considered a very complex notion in modern physics. More specifically, at a microscopic level, matter and energy are no longer retained within their simple form, and quantum mechanical models are proposed wherein potential form is considered in addition to actual form. In this paper we propose an alternative to standard Neodarwinian evolution theory. We suggest that the starting point of evolution theory cannot be limited to actual variation whereupon is selected, but to variation in the potential of entities according to the context. We therefore develop a formalism, referred to as Context driven Actualization of Potential (CAP), which handles potentiality and describes the evolution of entities as an actualization of potential through a reiterated interaction with the context. As in quantum mechanics, lack of knowledge of the entity, its context, or the interaction between context and entity leads to different forms of indeterminism in relation to the state of the entity. This indeterminism generates a non-Kolmogorovian distribution of probabilities that is different from the classical distribution of chance described by Darwinian evolution theory, which stems from a 'actuality focused', i.e. materialistic, view of nature. We also present a quantum evolution game that highlights the main differences arising from our new perspective and shows that it is more fundamental to consider evolution in general, and biological evolution in specific, as a process of actualization of potential induced by context, for which its material reduction is only a special case.
 
  • #1,847


not QG but possibly of interest:
http://arxiv.org/abs/1212.0585
Cosmology with a spin
Joao Magueijo, T.G. Zlosnik, T.W.B. Kibble
(Submitted on 3 Dec 2012)
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.
19 pages.

http://arxiv.org/abs/1212.0601
Lorentzian Manifolds and Causal Sets as Partially Ordered Measure Spaces
Luca Bombelli, Johan Noldus, Julio Tafoya
(Submitted on 4 Dec 2012)
We consider Lorentzian manifolds as examples of partially ordered measure spaces, sets endowed with compatible partial order relations and measures, in this case given by the causal structure and the volume element defined by each Lorentzian metric. This places the structure normally used to describe spacetime in geometrical theories of gravity in a more general context, which includes the locally finite partially ordered sets of the causal set approach to quantum gravity. We then introduce a function characterizing the closeness between any two partially ordered measure spaces and show that, when restricted to compact spaces satisfying a simple separability condition, it is a distance. In particular, this provides a quantitative, covariant way of describing how close two manifolds with Lorentzian metrics are, or how manifoldlike a causal set is.
13 pages, 5 Figures
 
Last edited:
  • #1,848


http://arxiv.org/abs/1212.2204
Electric Time in Quantum Cosmology
Stephon Alexander, Martin Bojowald, Antonino Marciano, David Simpson
(Submitted on 10 Dec 2012)
Effective quantum cosmology is formulated with a realistic global internal time given by the electric vector potential. New possibilities for the quantum behavior of space-time are found, and the high-density regime is shown to be very sensitive to the specific form of state realized.
19 pages, 5 figures.

http://arxiv.org/abs/1212.1821
Black hole thermodynamics under the microscope
Kevin Falls, Daniel F. Litim
(Submitted on 8 Dec 2012)
A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameter of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area, and bounds on black hole mass and temperature. A metric-based derivation for the equation of state, and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.
24 pages, 3 figures

http://arxiv.org/abs/1212.1755
Poincaré invariance and asymptotic flatness in Shape Dynamics
Henrique Gomes
(Submitted on 8 Dec 2012)
Shape Dynamics is a theory of gravity that sheds refoliation invariance in favor of spatial Weyl invariance. It is a canonical theory, constructed from a Hamiltonian, 3+1 perspective. One of the main deficits of Shape Dynamics is that its Hamiltonian is only implicitly constructed as a functional of the phase space variables. In this paper we aim to achieve a new perspective on tackling this problem. For this, we write down the equations of motion for Shape Dynamics. Although there is still an implicit function in these equations of motion, we can make it explicit for particular solutions. In particular, we construct Shape Dynamics over a curve in phase space representing a Minkowski spacetime, and use this to show that in this case Shape Dynamics possesses Poincar\'e symmetry for appropriate boundary conditions. The proper treatment of such boundary conditions leads us to completely formulate Shape Dynamics for open manifolds in the asymptotically flat case. We study the charges arising for Shape Dynamics in flat asymptotic boundary conditions and find a new component for the energy charge. This new charge, when added to the usual ADM energy to make up the total energy for Shape Dynamics, is completely Weyl invariant. We then use the equations of motion once again to find a non-trivial solution of Shape Dynamics, consisting of a flat static Universe with a point-like mass at the center. We calculate its energy and rederive the usual Schwarzschild mass.
22 pages
 
  • #1,849
http://lanl.arxiv.org/abs/1212.1930
A "Helium Atom" of Space: Dynamical Instability of the Isochoric Pentahedron
C. E. Coleman-Smith, B. Muller
(Submitted on 9 Dec 2012)
We present an analysis of the dynamics of the equifacial pentahedron on the Kapovich-Millson phase space under a volume preserving Hamiltonian. The classical dynamics of polyhedra under such a Hamiltonian may arise from the classical limit of the node volume operators in loop quantum gravity. The pentahedron is the simplest nontrivial polyhedron for which the dynamics may be chaotic. We consider the distribution of polyhedral configurations throughout the space and find indications that the borders between certain configurations act as separatrices. We examine the local stability of trajectories within this phase space and find that locally unstable regions dominate although extended stable regions are present. Canonical and microcanonical estimates of the Kolmogorov-Sinai entropy suggest that the pentahedron is a strongly chaotic system. The presence of chaos is further suggested by calculations of intermediate time Lyapunov exponents which saturate to non zero values.
20 Pages, 19 Figures

Berndt Müller of the physics department at Duke has around 10,000 cites to his several hundred published papers of which, interestingly, all but one or two have been outside gr-qc, mostly theoretical nuclear physics and high-energy phenomenology. I think this must certainly be his first LQG-related. The paper cites another one (strongly related thematically) by Haggard, that was already reported in post #1852 of this thread:

http://arxiv.org/abs/1211.7311
Pentahedral volume, chaos, and quantum gravity
Hal M. Haggard
(Submitted on 30 Nov 2012)
We show that chaotic classical dynamics associated to the volume of discrete grains of space leads to quantal spectra that are gapped between zero and nonzero volume. This strengthens the connection between spectral discreteness in the quantum geometry of gravity and tame ultraviolet behavior. We complete a detailed analysis of the geometry of a pentahedron, providing new insights into the volume operator and evidence of classical chaos in the dynamics it generates. These results reveal an unexplored realm of application for chaos in quantum gravity.
5 pages, 4 figures

It's interesting that a volume gap appears in several types of analysis. I see Müller came to Duke around 1990, prior to that was at Frankfurt.
http://inspirehep.net/author/B.Muller.1/
 
Last edited:
  • #1,850


http://arxiv.org/abs/1212.2332
Inferences about Interactions: Fermions and the Dirac Equation
Kevin H. Knuth
(Submitted on 11 Dec 2012)
At a fundamental level every measurement process relies on an interaction where one entity influences another. The boundary of an interaction is given by a pair of events, which can be ordered by virtue of the interaction. This results in a partially ordered set (poset) of events often referred to as a causal set. In this framework, an observer can be represented by a chain of events. Quantification of events and pairs of events, referred to as intervals, can be performed by projecting them onto an observer chain, or even a pair of observer chains, which in specific situations leads to a Minkowski metric replete with Lorentz transformations. We illustrate how this framework of interaction events gives rise to some of the well-known properties of the Fermions, such as Zitterbewegung. We then take this further by making inferences about events, which is performed by employing the process calculus, which coincides with the Feynman path integral formulation of quantum mechanics. We show that in the 1+1 dimensional case this results in the Feynman checkerboard model of the Dirac equation describing a Fermion at rest.
 
  • #1,851


http://arxiv.org/abs/1212.2852
Primordial tensor power spectrum in holonomy corrected Omega-LQC
Linda Linsefors, Thomas Cailleteau, Aurelien Barrau, Julien Grain
(Submitted on 12 Dec 2012)
The holonomy correction is one of the main terms arising when implementing loop quantum gravity ideas at an effective level in cosmology. The recent construction of an anomaly free algebra has shown that the formalism used, up to now, to derive the primordial spectrum of fluctuations was not correct. This article aims at computing the tensor spectrum in a fully consistent way within this deformed and closed algebra.
5 pages, 6 figures
 
  • #1,852


http://arxiv.org/abs/1212.3527
Asymptotic silence in loop quantum cosmology
Jakub Mielczarek
(Submitted on 14 Dec 2012)
The state of asymptotic silence, characterized by causal disconnection of the space points, emerges from various approaches aiming to describe gravitational phenomena in the limit of large curvatures. In particular, such behavior was anticipated by Belinsky, Khalatnikov and Lifgarbagez (BKL) in their famous conjecture put forward in the early seventies of the last century. While the BKL conjecture is based on purely classical considerations, one can expect that asymptotic silence should have its quantum counterpart at the level of a more fundamental theory of quantum gravity, which is the relevant description of gravitational phenomena in the limit of large energy densities. Here, we summarize some recent results which give support to such a possibility. More precisely, we discuss occurrence of the asymptotic silence due to polymerization of space at the Planck scale, in the framework of loop quantum cosmology. In the discussed model, the state of asymptotic silence is realized at the energy density ρ = ρc/2, where ρc is the maximal allowed energy density, being of the order of the Planck energy density. At energy densities ρ > ρc/2, the universe becomes 4D Euclidean space without causal structure. Therefore, the asymptotic silence appears to be an intermediate state of space between the Lorentzian and Euclidean phases.
4 pages, 3 figures, talk presented at the Multiverse and Fundamental Cosmology Conference, 10-14 September, 2012, Szczecin, Poland

http://arxiv.org/abs/1212.4060
Black Hole Entropy from complex Ashtekar variables
Ernesto Frodden, Marc Geiller, Karim Noui, Alejandro Perez
(Submitted on 17 Dec 2012)
In loop quantum gravity, the number NΓ(aH, γ) of microstates of a black hole for a given discrete geometry Γ depends on the so-called Barbero-Immirzi parameter γ. Using a suitable analytic continuation of γ to complex values, we show that the number NΓ(aH, ±i) of microstates behaves as exp(aH/(4 lp2)) for large area aH in the large spin semiclassical limit. Such a correspondence with the semiclassical Bekenstein-Hawking entropy law points towards an unanticipated and remarkable feature of the original complex Ashtekar variables for quantum gravity.
5 pages

http://arxiv.org/abs/1212.3614
Chiral description of ghost-free massive gravity
Sergei Alexandrov, Kirill Krasnov, Simone Speziale
(Submitted on 14 Dec 2012)
We propose and study a new first order version of the ghost-free massive gravity. Instead of metrics or tetrads, it uses a connection together with Plebanski's chiral 2-forms as fundamental variables, rendering the phase space structure similar to that of SU(2) gauge theories. The chiral description simplifies computations of the constraint algebra, and allows us to perform the complete canonical analysis of the system. In particular, we explicitly compute the secondary constraint and carry out the stabilization procedure, thus proving that in general the theory propagates 7 degrees of freedom, consistently with previous claims. Finally, we point out that the description in terms of 2-forms opens the door to an infinite class of ghost-free massive bi-gravity actions.
25 pages

http://arxiv.org/abs/1211.3062
Bananaworld: Quantum Mechanics for Primates
Jeffrey Bub
(Submitted on 13 Nov 2012)
This is intended to be a serious paper, in spite of the title. The idea is that quantum mechanics is about probabilistic correlations, i.e., about the structure of information, insofar as a theory of information is essentially a theory of probabilistic correlations. To make this clear, it suffices to consider measurements of two binary-valued observables, x with outcomes a = 0 or 1, performed by Alice in a region A, and y with outcomes b = 0 or 1 performed by Bob in a separated region B — or, to emphasize the banality of the phenomena, two ways of peeling a banana, resulting in one of two tastes. The imagined bananas of Bananaworld are non-standard, with probabilistic correlations for peelings and tastes that lie outside the classical correlation polytope, which has the structure of a simplex. The 'no go' theorems tell us that we can't shoe-horn these correlations into the classical simplex by supposing that something has been left out of the story. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are shown to be generic features of non-simplex theories. As far as the conceptual problems are concerned, we might as well talk about bananas.
23 pages, 4 figures

http://arxiv.org/abs/1212.3606
Interpreting Bananaworld: A response to Bub's Quantum Mechanics for Primates
Ulrich Mohrhoff
(Submitted on 16 Dec 2012)
The interpretative principle proposed by Bub in 1211.3062v1 [quant-ph] is justified only for all practical purposes (Bell's "FAPP trap"). An alternative interpretative principle is proposed. It brings to light those features of the quantum world because of which the fundamental theoretical framework of physics is a "mere" probability calculus, and it amply justifies Bohr's insistence that quantum-mechanical observables cannot be defined without reference to the experimental conditions in which they are measured. It implies that the spatial distinctions we make cannot be intrinsic to space, that regions "of space" must be realized by macroscopic objects, that the spatiotemporal differentiation of the physical world is incomplete, that the positions of macroscopic objects (suitably defined) are definite in a nonclassical sense, and that unconditional factuality can be consistently attributed to them.
16 pages, response to 1211.3062
 
Last edited:
  • #1,853


http://arxiv.org/abs/1212.4176
Empty Black Holes, Firewalls, and the Origin of Bekenstein-Hawking Entropy
Mehdi Saravani, Niayesh Afshordi, Robert B. Mann
(Submitted on 17 Dec 2012)
We propose a novel solution for the endpoint of gravitational collapse, in which spacetime ends (and is orbifolded) at a microscopic distance from black hole event horizons. This model is motivated by the emergence of singular event horizons in the gravitational aether theory, a semi-classical solution to the cosmological constant problem(s), and thus suggests a catastrophic breakdown of general relativity close to black hole event horizons. A similar picture emerges in fuzzball models of black holes in string theory, as well as the recent firewall proposal to resolve the information paradox. We then demonstrate that positing a surface fluid with vanishing energy density (but non-vanishing pressure) at the new boundary of spacetime, which is required by Israel junction conditions, yields a thermodynamic entropy that is identical to the Bekenstein-Hawking area law for charged rotating black holes. To our knowledge, this is the first derivation of black hole entropy which only employs local thermodynamics. Finally, a model for the microscopic degrees of freedom of the surface fluid (which constitute the micro-states of the black hole) is suggested, which has a finite, but Lorentz-violating, quantum field theory.

http://arxiv.org/abs/1212.4274
Asymptotic Safety and Black Hole Thermodynamics
D. Becker, M. Reuter
(Submitted on 18 Dec 2012)
We present recent results on the non-perturbative renormalization group flow of Quantum Einstein Gravity (QEG) on spacetime manifolds with boundaries. As an application, novel quantum gravity corrections to the thermodynamics of black holes are discussed.

http://arxiv.org/abs/1212.4325
On quantum gravity, Asymptotic Safety, and paramagnetic dominance
Andreas Nink, Martin Reuter
(Submitted on 18 Dec 2012)
We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed out.

http://arxiv.org/abs/1212.4473
Statistical Entropy of a BTZ Black Hole from Loop Quantum Gravity
Ernesto Frodden, Marc Geiller, Karim Noui, Alejandro Perez
(Submitted on 18 Dec 2012)
We compute the statistical entropy of a BTZ black hole in the context of three-dimensional Euclidean loop quantum gravity with a cosmological constant $\Lambda$. As in the four-dimensional case, a quantum state of the black hole is characterized by a spin network state. Now however, the underlying colored graph $\Gamma$ lives in a two-dimensional spacelike surface $\Sigma$, and some of its links cross the black hole horizon, which is viewed as a circular boundary of $\Sigma$. Each link $\ell$ crossing the horizon is colored by a spin $j_\ell$ (at the kinematical level), and the length $L$ of the horizon is given by the sum $L=\sum_\ell L_\ell$ of the fundamental length contributions $L_\ell$ carried by the spins $j_\ell$ of the links $\ell$. We propose an estimation for the number $N^\text{BTZ}_\Gamma(L,\Lambda)$ of the Euclidean BTZ black hole microstates (defined on a fixed graph $\Gamma$) based on an analytic continuation from the case $\Lambda>0$ to the case $\Lambda<0$. In our model, we show that $N^\text{BTZ}_\Gamma(L,\Lambda)$ reproduces the Bekenstein-Hawking entropy in the classical limit. This asymptotic behavior is independent of the choice of the graph $\Gamma$ provided that the condition $L=\sum_\ell L_\ell$ is satisfied, as it should be in three-dimensional quantum gravity.

http://arxiv.org/abs/1212.3687
Time delays across saddles as a test of modified gravity
Joao Magueijo, Ali Mozaffari
(Submitted on 15 Dec 2012)
Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models this translates into diverging time-delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within meters of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter-Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system.

http://arxiv.org/abs/1212.3699
Scaling up the extrinsic curvature in asymptotically flat gravitational initial data: Generating trapped surfaces
Shan Bai, Niall Ó Murchadha
(Submitted on 15 Dec 2012)
The existence of the initial value constraints means that specifying initial data for the Einstein equations is non-trivial. The standard method of constructing initial data in the asymptotically flat case is to choose an asymptotically flat 3-metric and a transverse-tracefree (TT) tensor on it. One can find a conformal transformation that maps these data into solutions of the constraints. In particular, the TT tensor becomes the extrinsic curvature of the 3-slice. We wish to understand how the physical solution changes as the free data is changed. In this paper we investigate an especially simple change: we multiply the TT tensor by a large constant. One might assume that this corresponds to pumping up the extrinsic curvature in the physical initial data. Unexpectedly, we show that, while the conformal factor monotonically increases, the physical extrinsic curvature decreases. The increase in the conformal factor however means that the physical volume increases in such a way that the ADM mass become unboundedly large. In turn, the blow-up of the mass combined with the control we have on the extrinsic curvature allows us to show that trapped surfaces, i.e., surfaces that are simultaneously future and past trapped, appear in the physical initial data.

http://arxiv.org/abs/1212.3698
Scaling up the extrinsic curvature in gravitational initial data
Shan Bai, Niall Ó Murchadha
(Submitted on 15 Dec 2012)
Vacuum solutions to the Einstein equations can be viewed as the interplay between the geometry and the gravitational wave energy content. The constraints on initial data reflect this interaction. We assume we are looking at cosmological solutions to the Einstein equations so we assume that the 3-space is compact, without boundary. In this article we investigate, using both analytic and numerical techniques, what happens when the extrinsic curvature is increased while the background geometry is held fixed. This is equivalent to trying to magnify the local gravitational wave kinetic energy on an unchanged background. We find that the physical intrinsic curvature does not blow up. Rather the local volume of space expands to accommodate this attempt to increase the kinetic energy.
 
  • #1,854


http://arxiv.org/abs/1212.3710
Displacing entanglement back and forth between the micro and macro domains
Natalia Bruno, Anthony Martin, Pavel Sekatski, Nicolas Sangouard, Rob Thew, Nicolas Gisin
(Submitted on 15 Dec 2012)
Quantum theory is often presented as the theory describing the microscopic world, and admittedly, it has done this extremely well for decades. Nonetheless, the question of whether it applies at all scales and in particular at human scales remains open, despite considerable experimental effort. Here, we report on the displacement of quantum entanglement into the domain where it involves two macroscopically distinct states, i.e. two states characterised by a large enough number of photons to be seen, at least in principle, with our eyes and that could be distinguished using mere linear - coarse-grained - detectors with a high probability. Specifically, we start by the generation of entanglement between two spatially separated optical modes at the single photon level and subsequently displace one of these modes up to almost a thousand photons. To reliably check whether entanglement is preserved, the mode is re-displaced back to the single photon level and a well established entanglement measure, based on single photon detection, is performed. The ability to displace an entangled state from the micro to the macro domain and back again provides a fascinating tool to probe fundamental questions about quantum theory and holds potential for more applied problems such as quantum sensing.
 
  • #1,855


http://arxiv.org/abs/1212.4773
Deformed General Relativity
Martin Bojowald, George M. Paily
(Submitted on 19 Dec 2012)
Deformed special relativity is embedded in deformed general relativity using the methods of canonical relativity and loop quantum gravity. Phase-space dependent deformations of symmetry algebras then appear, which in some regimes can be rewritten as non-linear Poincare algebras with momentum-dependent deformations of commutators between boosts and time translations. In contrast to deformed special relativity, the deformations are derived for generators with an unambiguous physical role, following from the relationship between canonical constraints of gravity with stress-energy components. The original deformation does not appear in momentum space and does not give rise to non-locality issues or problems with macroscopic objects. Contact with deformed special relativity may help to test loop quantum gravity or restrict its quantization ambiguities.
14 pages
 
  • #1,856


http://arxiv.org/abs/1212.5166
Modeling black holes with angular momentum in loop quantum gravity
Ernesto Frodden, Alejandro Perez, Daniele Pranzetti, Christian Roeken
(Submitted on 20 Dec 2012)
We construct a SU(2) connection formulation of Kerr isolated horizons. As in the non-rotating case, the model is based on a SU(2) Chern-Simons theory describing the degrees of freedom on the horizon. The presence of a non-vanishing angular momentum modifies the admissibility conditions for spin network states. Physical states of the system are in correspondence with open intertwiners with total spin matching the angular momentum of the spacetime.
18 pages.

http://arxiv.org/abs/1212.5183
On the Architecture of Spacetime Geometry
Eugenio Bianchi, Robert C. Myers
(Submitted on 20 Dec 2012)
We propose entanglement entropy as a probe of the architecture of spacetime in quantum gravity. We argue that the leading contribution to this entropy satisfies an area law for any sufficiently large region in a smooth spacetime, which, in fact, is given by the Bekenstein-Hawking formula. This conjecture is supported by various lines of evidence from perturbative quantum gravity, simplified models of induced gravity and loop quantum gravity, as well as the AdS/CFT correspondence.
8 pages, 1 figure

http://arxiv.org/abs/1212.5246
Gravitational origin of the weak interaction's chirality
Stephon Alexander, Antonino Marciano, Lee Smolin
(Submitted on 20 Dec 2012)
We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space-time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom.
This unification is achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two phases. A parity symmetric phase yields, as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless graviton, a massive spin two field and a scalar ghost. Because of the latter this phase is unstable. Parity is broken in a stable phase where the eight degrees of freedom arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.
21 pages

http://arxiv.org/abs/1212.4987
Does Gravity's Rainbow induce Inflation without an Inflaton?
Remo Garattini, Mairi Sakellariadou
(Submitted on 20 Dec 2012)
We study aspects of quantum cosmology in the presence of a modified space-time geometry. In particular, within the context of Gravity's Rainbow modified geometry, motivated from quantum gravity corrections at the Planck energy scale, we show that the distortion of the metric leads to a Wheeler-De Witt equation whose solution admits outgoing plane waves. Hence, a period of cosmological inflation may arise without the need for introducing an inflaton field.
13 pages

http://arxiv.org/abs/1212.5064
A note on the Holst action, the time gauge, and the Barbero-Immirzi parameter
Marc Geiller, Karim Noui
(Submitted on 20 Dec 2012)
In this note, we review the canonical analysis of the Holst action in the time gauge, with a special emphasis on the Hamiltonian equations of motion and the fixation of the Lagrange multipliers. This enables us to identify at the Hamiltonian level the various components of the covariant torsion tensor, which have to be vanishing in order for the classical theory not to depend upon the Barbero-Immirzi parameter. We also introduce a formulation of three-dimensional gravity with an explicit phase space dependency on the Barbero-Immirzi parameter as a potential way to investigate its fate and relevance in the quantum theory.
22 pages

http://arxiv.org/abs/1212.5150
A loop quantum multiverse?
Martin Bojowald
(Submitted on 20 Dec 2012)
Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.
10 pages, 9 figures, based on a plenary talk given at Multicosmofun '12, Szeczin, Poland

http://arxiv.org/abs/1212.5233
Causal loop in the theory of Relative Locality
Lin-Qing Chen
(Submitted on 20 Dec 2012)
Relative locality is a proposal for describing the Planck scale modifications to relativistic dynamics resulting from non-trivial momentum space geometry. A simple construction of interaction processes shows that Relative Locality allows for existence of causal loops, which arises from the phase space structure of the theory. The general condition allowing such process to happen is studied. We showcase this when the geometry of momentum space is taken to be Kappa-Poincare momentum space.
5 pages, 3 figures

brief mention:
http://arxiv.org/abs/1212.5226
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, E. L. Wright
(Submitted on 20 Dec 2012)
We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets...
...
31 pages, 12 figures
 
Last edited:
  • #1,857


http://arxiv.org/abs/1212.5571
A positive formalism for quantum theory in the general boundary formulation
Robert Oeckl (CCM-UNAM)
(Submitted on 21 Dec 2012)
We introduce a new "positive formalism" for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.
28 pages

to clarify the relevance here is a quote from end of section 2 on page 4:
"...The time-evolution operator U ̃ restricted to self-adjoint operators produces self-adjoint operators. Moreover, it is positive, i.e., it maps positive operators to positive operators. It also conserves the trace so that it maps mixed states to mixed states. These considerations suggest that positivity and order structure should play a more prominent role at a foundational level than say the Hilbert space structure of H or the algebra structure of the operators on it from which they are usually derived.
Algebraic quantum field theory [7] is a great example of the fruitfulness of taking serious some of these issues. There, one abandons in fact the notion of Hilbert spaces in favor of more flexible structures built on C∗-algebras. Also, positivity plays a crucial role there in the concept of state."

http://arxiv.org/abs/1212.5572
On the no-gravity limit of gravity
J. Kowalski-Glikman, M. Szczachor
(Submitted on 21 Dec 2012)
We argue that Relative Locality may arise in the no gravity G→0 limit of gravity. In this limit gravity becomes a topological field theory of the BF type that, after coupling to particles, may effectively deform its dynamics. We briefly discuss another no gravity limit with a self dual ground state as well as the topological ultra strong G→∞ one.
3 pages. Based on a talk given at the 13th Marcel Grossmann Meeting
 
Last edited:
  • #1,858


http://arxiv.org/abs/1212.5630
Infinite Shannon entropy
Valentina Baccetti (Victoria University of Wellington), Matt Visser (Victoria University of Wellington)
(Submitted on 21 Dec 2012)
Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or QFT defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context.
 
  • #1,859


http://arxiv.org/abs/1212.6824
Black hole entanglement entropy and the renormalization group
Ted Jacobson, Alejandro Satz
(Submitted on 31 Dec 2012)
We investigate the contributions of quantum fields to black hole entropy by using a cutoff scale at which the theory is described with a Wilsonian effective action. For both free and interacting fields, the total black hole entropy can be partitioned into a contribution derived from the gravitational effective action and a contribution from quantum fluctuations below the cutoff scale. In general the latter includes a quantum contribution to the Noether charge. We analyze whether it is appropriate to identify the rest with horizon entanglement entropy, and find several complications for this interpretation, which are especially problematic for interacting fields.
29 pages

http://arxiv.org/abs/1212.6944
Boundary unitarity without firewalls
Ted Jacobson
(Submitted on 31 Dec 2012)
Both AdS/CFT duality and more general reasoning from quantum gravity point to a rich collection of boundary observables that always evolve unitarily. The physical quantum gravity states described by these observables must be solutions of the spatial diffeomorphism and Wheeler-deWitt constraints, which implies that the state space does not factorize into a tensor product of localized degrees of freedom. The recent "firewall" argument that unitarity of black hole S-matrix implies the presence of a highly excited quantum state near the horizon is based on such a factorization, hence is not applicable in quantum gravity.
Comments: 7 pages

http://arxiv.org/abs/1212.6821
Black holes and Hawking radiation in spacetime and its analogues
Ted Jacobson
(Submitted on 31 Dec 2012)
These notes introduce the fundamentals of black hole geometry, the thermality of the vacuum, and the Hawking effect, in spacetime and its analogues. Stimulated emission of Hawking radiation, the trans-Planckian question, short wavelength dispersion, and white hole radiation in the setting of analogue models are also discussed. No prior knowledge of differential geometry, general relativity, or quantum field theory in curved spacetime is assumed.
31 pages, 9 figures; to appear in the proceedings of the IX SIGRAV School on 'Analogue Gravity', Como (Italy), May 2011, eds. D. Faccio et. al. (Springer)
 
Last edited:
  • #1,860


http://arxiv.org/abs/1212.6967
Entropic Inference: some pitfalls and paradoxes we can avoid
Ariel Caticha
(Submitted on 31 Dec 2012)
The method of maximum entropy has been very successful but there are cases where it has either failed or led to paradoxes that have cast doubt on its general legitimacy. My more optimistic assessment is that such failures and paradoxes provide us with valuable learning opportunities to sharpen our skills in the proper way to deploy entropic methods. The central theme of this paper revolves around the different ways in which constraints are used to capture the information that is relevant to a problem. This leads us to focus on four epistemically different types of constraints. I propose that the failure to recognize the distinctions between them is a prime source of errors. I explicitly discuss two examples. One concerns the dangers involved in replacing expected values with sample averages. The other revolves around misunderstanding ignorance. I discuss the Friedman-Shimony paradox as it is manifested in the three-sided die problem and also in its original thermodynamic formulation.
Comments: 14 pages, 1 figure. Invited paper presented at MaxEnt 2012, The 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, (July 15--20, 2012, Garching, Germany)

http://arxiv.org/abs/1212.6946
The Entropic Dynamics of Relativistic Quantum Fields
Ariel Caticha
(Submitted on 31 Dec 2012)
The formulation of quantum mechanics within the framework of entropic dynamics is extended to the domain of relativistic quantum fields. The result is a non-dissipative relativistic diffusion in the infinite dimensional space of field configurations. On extending the notion of entropic time to the relativistic regime we find that the field fluctuations provide the clock that sets the scale of duration. We also find that the usual divergences that affect all quantum field theories do not refer to the real values of physical quantities but rather to epistemic quantities invariably associated to unphysical probability distributions such as variances and other measures of uncertainty.
Comments: 10 pages. Presented at MaxEnt 2012, The 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, (July 15-20, 2012, Garching, Germany)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
5K
Replies
16
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
26
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • Poll Poll
  • · Replies 17 ·
Replies
17
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K