Fermions in Loop Quantum Cosmology
Beatriz Elizaga Navascués,
Mercedes Martín-Benito,
Guillermo A. Mena Marugán
(Submitted on 30 Mar 2017)
This work pioneers the quantization of primordial fermion perturbations in hybrid Loop Quantum Cosmology (LQC). We consider a Dirac field coupled to a spatially flat, homogeneous, and isotropic cosmology, sourced by a scalar inflaton, and treat the Dirac field as a perturbation. We describe the inhomogeneities of this field in terms of creation and annihilation variables, chosen to admit a unitary evolution if the Dirac fermion were treated as a test field. Considering instead the full system, we truncate its action at quadratic perturbative order and construct a canonical formulation. In particular this implies that, in the global Hamiltonian constraint of the model, the contribution of the homogeneous sector is corrected with a quadratic perturbative term. We then adopt the hybrid LQC approach to quantize the full model, combining the loop representation of the homogeneous geometry with the Fock quantization of the inhomogeneities. We assume a Born-Oppenheimer ansatz for physical states and show how to obtain a Schr\"odinger equation for the quantum evolution of the perturbations, where the role of time is played by the homogeneous inflaton. We prove that the resulting quantum evolution of the Dirac field is indeed unitary, despite the fact that the underlying homogeneous geometry has been quantized as well. Remarkably, in such evolution, the fermion field couples to an infinite sequence of quantum moments of the homogeneous geometry. Moreover, the evolved Fock vacuum of our fermion perturbations is shown to be an exact solution of the Schr\"odinger equation. Finally, we discuss in detail the quantum backreaction that the fermion field introduces in the global Hamiltonian constraint. For completeness, our quantum study includes since the beginning (gauge-invariant) scalar and tensor perturbations, that were studied in previous works.
Comments: 38 pages. Prepared to submit to JCAP
Subjects: General Relativity and Quantum Cosmology (gr-qc)
Cite as:
arXiv:1703.10391 [gr-qc]
Loop quantum cosmology and singularities
Ward Struyve
(Submitted on 30 Mar 2017)
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. In order to base this belief on theoretical analysis, the notorious problems such as the problem of time and the problem of the actual meaning of singularities must be addressed and eventually overcome. In this paper, we address the problem of singularities in the context of the Bohmian formulation of loop quantum cosmology (which describes symmetry-reduced models of quantum gravity using the quantization techniques of loop quantum gravity). This formulation solves the mentioned conceptual problems. For example the notion of singularity is clear in this case, since there is an actual metric in addition to the wave function. As such, there is a singularity whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker space-time with arbitrary constant spatial curvature and possibly a cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This result is obtained without assuming any boundary conditions. This result should also be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist (depending on the wave function and the initial conditions for the metric and scalar field).
Comments: 17 pages, no figures, LaTeX
Subjects: General Relativity and Quantum Cosmology (gr-qc); Quantum Physics (quant-ph)
Cite as:
arXiv:1703.10274 [gr-qc]
(or
arXiv:1703.10274v1 [gr-qc] for this version)
Black Holes in Loop Quantum Gravity
Alejandro Perez
(Submitted on 27 Mar 2017)
This is a review of the results on black hole physics in the framework of loop quantum gravity. The key feature underlying the results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields and specially with Fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads also to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program. This review reports its achievements and open questions in a pedagogical manner with an emphasis on quantum aspects of black hole physics.
Subjects: General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)
Cite as:
arXiv:1703.09149 [gr-qc]
(or
arXiv:1703.09149v1 [gr-qc] for this version)
Inflation and Bounce from Classical and Loop Quantum Cosmology Imperfect Fluids
V.K. Oikonomou
(Submitted on 27 Mar 2017)
We investigate how various inflationary and bouncing cosmologies can be realized by imperfect fluids with a generalized equation of state, in the context of both classical and loop quantum cosmology. With regards to the inflationary cosmologies, we study the intermediate inflation scenario, the R2 inflation scenario and two constant-roll inflation scenarios and with regards to the bouncing cosmologies we study the matter bounce scenario, the singular bounce and the super bounce scenario. Within the context of the classical cosmology, we calculate the spectral index of the power spectrum of primordial curvature perturbations, the scalar-to-tensor ratio and the running of the spectral index and we compare the resulting picture with the Planck data. As we demonstrate, partial compatibility with the observational data is achieved in the imperfect fluid description, however none of the above scenarios is in full agreement with data. This result shows that although it is possible to realize various cosmological scenarios using different theoretical frameworks, it is not guaranteed that all the theoretical descriptions are viable.
Comments: IJMPD Accepted
Subjects: General Relativity and Quantum Cosmology (gr-qc)
Cite as:
arXiv:1703.09009 [gr-qc]
(or
arXiv:1703.09009v1 [gr-qc] for this version)