Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Just curious as to wether the Lowenheim-Skolem theorem is constructive , in the sense

that , while it guarantees the existence of a model of infinite cardinality -- given the

existence of any infinite model -- does it give a prescription for constructing them?

I was thinking mostly of the ( 1st order theory of) the reals: the standard model is

the one given in most books. Then we can construct the hyperreals using, e.g.,

ultraproducts. What if we had any other infinite cardinal κ : is there a method for

constructing a model of cardinality κ ?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Lowenheim-Skolem and Constructive

**Physics Forums | Science Articles, Homework Help, Discussion**