kaliprasad said:
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
[sp]If $\sin\alpha = \cos\beta$ then the possible values for $\beta$ are $\beta = \pm\bigl(\frac\pi2 - \alpha\bigr) + 2k\pi.$ Putting $\alpha = p\cos x$ and $\beta = p\sin x$, we get $p\sin x = \pm\bigl(\frac\pi2 - p\cos x\bigr) + 2k\pi,$ from which $$p = \frac{\pm\pi + 4k\pi}{2(\sin x \pm\cos x)},$$ where $k$ is an integer, and the $\pm$ sign in the numerator must be the same as the one in the denominator.
We want to choose the values of $\pm$ and $k$ that will give the minimal positive value for $p$. The correct choice will depend on $x$, and we may assume that $x$ lies in the interval $[0,2\pi].$
Look at the case of the $+$ signs first, so that $p = \frac{\pi + 4k\pi}{2(\sin x + \cos x)}.$ The denominator is positive when $x\in \bigl[0,\frac34\pi\bigr) \cup \bigl(\frac74\pi,2\pi\bigr]$ and in that case the smallest positive value for the numerator clearly occurs when $k=0$, giving $p = \frac{\pi}{2(\sin x + \cos x)}.$ But when $x\in \bigl(\frac34\pi,\frac74\pi\bigr)$ the denominator is negative, so the numerator must also be negative. The value of $k$ that minimizes $p$ is then $k=-1$, and $p = \frac{-3\pi}{2(\sin x + \cos x)}.$
A similar analysis of the case of the $-$ signs shows that we should take $k=0$ if $x\in \bigl[0,\frac14\pi\bigr) \cup \bigl(\frac54\pi,2\pi\bigr]$, and $k=1$ if $x\in \bigl(\frac14\pi,\frac54\pi\bigr).$
Thus we have four possible candidates for the optimal value of $p$, as follows: $$(1)\qquad p = \tfrac{\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl[0,\tfrac34\pi\bigr) \cup \bigl(\tfrac74\pi,2\pi\bigr],$$ $$(2)\qquad p = \tfrac{-3\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl(\tfrac34\pi,\tfrac74\pi\bigr),$$ $$(3)\qquad p = \tfrac{-\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl[0,\tfrac14\pi\bigr) \cup \bigl(\tfrac54\pi,2\pi\bigr],$$ $$(4)\qquad p = \tfrac{3\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl(\tfrac14\pi,\tfrac54\pi\bigr).$$
Trying to decide which of those candidates actually gives the best result is frankly a bit of a nightmare. It is useful to find the crossover points, where two of the four formulas are equal. For example, formulas $(1)$ and $(4)$ are equal when $ \tfrac{\pi}{2(\sin x + \cos x)} = \tfrac{3\pi}{2(\sin x - \cos x)}$, which simplifies to $\tan x = -2.$ If I have not made any mistakes then the final values for $p$ come out like this, where $\theta = \arctan2$:
If $0\leqslant x \leqslant \pi-\theta$ then $p = \tfrac{\pi}{2(\sin x + \cos x)}$.
If $\pi-\theta \leqslant x \leqslant \pi$ then $p = \tfrac{3\pi}{2(\sin x - \cos x)}$.
If $\pi \leqslant x \leqslant \pi + \theta$ then $p = \tfrac{-3\pi}{2(\sin x + \cos x)}$.
If $\pi+\theta \leqslant x \leqslant 2\pi$ then $p = \tfrac{-\pi}{2(\sin x - \cos x)}$.
[/sp]