MHB Lowest Positive $p$: Solving $\cos(p\sin \, x) = \sin (p\cos\, x)$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Positive
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
 
Mathematics news on Phys.org
kaliprasad said:
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
[sp]If $\sin\alpha = \cos\beta$ then the possible values for $\beta$ are $\beta = \pm\bigl(\frac\pi2 - \alpha\bigr) + 2k\pi.$ Putting $\alpha = p\cos x$ and $\beta = p\sin x$, we get $p\sin x = \pm\bigl(\frac\pi2 - p\cos x\bigr) + 2k\pi,$ from which $$p = \frac{\pm\pi + 4k\pi}{2(\sin x \pm\cos x)},$$ where $k$ is an integer, and the $\pm$ sign in the numerator must be the same as the one in the denominator.

We want to choose the values of $\pm$ and $k$ that will give the minimal positive value for $p$. The correct choice will depend on $x$, and we may assume that $x$ lies in the interval $[0,2\pi].$

Look at the case of the $+$ signs first, so that $p = \frac{\pi + 4k\pi}{2(\sin x + \cos x)}.$ The denominator is positive when $x\in \bigl[0,\frac34\pi\bigr) \cup \bigl(\frac74\pi,2\pi\bigr]$ and in that case the smallest positive value for the numerator clearly occurs when $k=0$, giving $p = \frac{\pi}{2(\sin x + \cos x)}.$ But when $x\in \bigl(\frac34\pi,\frac74\pi\bigr)$ the denominator is negative, so the numerator must also be negative. The value of $k$ that minimizes $p$ is then $k=-1$, and $p = \frac{-3\pi}{2(\sin x + \cos x)}.$

A similar analysis of the case of the $-$ signs shows that we should take $k=0$ if $x\in \bigl[0,\frac14\pi\bigr) \cup \bigl(\frac54\pi,2\pi\bigr]$, and $k=1$ if $x\in \bigl(\frac14\pi,\frac54\pi\bigr).$

Thus we have four possible candidates for the optimal value of $p$, as follows: $$(1)\qquad p = \tfrac{\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl[0,\tfrac34\pi\bigr) \cup \bigl(\tfrac74\pi,2\pi\bigr],$$ $$(2)\qquad p = \tfrac{-3\pi}{2(\sin x + \cos x)} \text{ for } x\in \bigl(\tfrac34\pi,\tfrac74\pi\bigr),$$ $$(3)\qquad p = \tfrac{-\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl[0,\tfrac14\pi\bigr) \cup \bigl(\tfrac54\pi,2\pi\bigr],$$ $$(4)\qquad p = \tfrac{3\pi}{2(\sin x - \cos x)} \text{ for } x\in \bigl(\tfrac14\pi,\tfrac54\pi\bigr).$$

Trying to decide which of those candidates actually gives the best result is frankly a bit of a nightmare. It is useful to find the crossover points, where two of the four formulas are equal. For example, formulas $(1)$ and $(4)$ are equal when $ \tfrac{\pi}{2(\sin x + \cos x)} = \tfrac{3\pi}{2(\sin x - \cos x)}$, which simplifies to $\tan x = -2.$ If I have not made any mistakes then the final values for $p$ come out like this, where $\theta = \arctan2$:

If $0\leqslant x \leqslant \pi-\theta$ then $p = \tfrac{\pi}{2(\sin x + \cos x)}$.

If $\pi-\theta \leqslant x \leqslant \pi$ then $p = \tfrac{3\pi}{2(\sin x - \cos x)}$.

If $\pi \leqslant x \leqslant \pi + \theta$ then $p = \tfrac{-3\pi}{2(\sin x + \cos x)}$.

If $\pi+\theta \leqslant x \leqslant 2\pi$ then $p = \tfrac{-\pi}{2(\sin x - \cos x)}$.

[/sp]
 
kaliprasad said:
find lowest positive p such that $\cos(p\sin \, x) = \sin (p\cos\, x)$
my solution:
let $0\leq x\leq 2\pi$
$cos(p sin x)=sin(p cos x)$
let $y=pcosx$
we have :$siny=cos(\dfrac{\pi}{2}-y)$---(A)
or $sin y=cos(\dfrac{3\pi}{2}+y)$---(B)
from (A):$psinx=\dfrac{\pi}{2}-y$
$\therefore p=\dfrac{\pi}{2(sinx+cosx)}\geq \dfrac {\pi}{2\sqrt 2 }>0$
from (B):$psinx=\dfrac{3\pi}{2}+y$
$\therefore p=\dfrac{3\pi}{2(sinx-cosx)}\geq \dfrac {3\pi}{2\sqrt 2 }>0$
because we want to find the lowest positive $p>0$
we get $p=\dfrac{\pi}{2\sqrt 2}=\dfrac {\sqrt 2 \pi}{4}$
 
Last edited:
I agree with Albert's solution if $x$ is allowed to vary. I read the question as implying that $x$ is fixed.
 
My solution
we have
$\cos(p\sin\, x) = \sin (p\cos\,x)= \cos (\frac{\pi}{2} - p\cos\,x)$
hence
$p\sin \,x = \frac{\pi}{2} - p \cos \,x$ (other values shall given -ve / larger p)
hence
$p(\cos \ , x + \sin\, x) = \frac{\pi}{2}$
or $\sqrt{2}p( \sin \frac{\pi}{4} \cos \, x + \cos \frac{\pi}{4} \sin \, x) = \frac{\pi}{2}$
or $\sqrt{2}p( \sin ( x + \frac{\pi}{4}) = \frac{\pi}{2}$
the largest value of $\sin ( x + \frac{\pi}{4})$ is 1 hence smallest positive $p$ is $\frac{\pi}{2\sqrt{2}}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top