MHB Luc's question at Yahoo Answers regarding an indefinite integral

AI Thread Summary
The discussion centers on finding the indefinite integral of the function x^4(5x^5+1)^7 dx. The solution involves using u-substitution, where u is defined as 5x^5 + 1, leading to the integral being rewritten as (1/25)∫u^7 du. This results in the final answer of (1/200)(5x^5 + 1)^8 + C after back-substituting for u. The response encourages further calculus problem submissions on the Math Help Boards forum. The discussion effectively addresses the integral calculation and invites community engagement.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the indefinite integral?

x^4(5x^5+1)^7 dx

Here is a link to the question:

Find the indefinite integral? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Luc's question at Yahoo! Answers regarding an indedinte integral

Hello Luc,

We are asked to evaluate:

$$\int x^4\left(5x^5+1 \right)^7\,dx$$

It we use the $u$-substitution:

$$u=5x^5+1\,\therefore\,du=25x^4\,dx$$

we may rewrite the integral as:

$$\frac{1}{25}\int u^7\,du=\frac{1}{25}\left(\frac{u^8}{8} \right)+C=\frac{1}{200}u^8+C$$

Now, back-substituting for $u$, we may state:

$$\int x^4\left(5x^5+1 \right)^7\,dx=\frac{1}{200}\left(5x^5+1 \right)^8+C$$

To Luc and any other guests viewing this topic, I invite and encourage you to post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top