MHB -m99.53 ty-plane hypotheses of Theorem 2.4.2.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
The hypotheses of Theorem 2.4.2 are satisfied in the ty-plane wherever the function f(t,y) is continuous, specifically in the context of the differential equation y' = (t - y) / (2t + 5y). This function is continuous as long as the denominator, 2t + 5y, is not equal to zero. The critical line where continuity fails is given by the equation 2t + 5y = 0, which simplifies to y = -(2/5)t. Therefore, the hypotheses are satisfied everywhere in the ty-plane except along this line. Understanding this condition is essential for correctly interpreting the problem.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9090
State where in the ty-plane the hypotheses of Theorem 2.4.2 are satisfied

$\displaystyle y^\prime= \frac{t-y}{2t+5y}$
ok I don't see how this book answer was derived since not sure how to separate varibles
$2t+5y>0 \textit{ or }2t+5y<0$
 

Attachments

  • 2_4_2.png
    2_4_2.png
    16 KB · Views: 122
Physics news on Phys.org
This is very concerning. You have posted a series of question where you seem to have no idea what the question is asking. In each one you have immediately jumped to trying to solve the differential equation when the question given does not ask you to do so.

Here the problem just asks you to "State where in the ty-plane the hypotheses of theorem 2.4.2 are satisfied". The hypotheses of theorem 2.4.2 are that the function f(t,y) in the differential equation y'= f(t,y) be continuous. Here the differential equation is $y'= \frac{t- y}{2t+ 5y}$. So the problem is asking "where is $
\frac{t- y}{2t+ 5y}$ continuous?"

You should know that a rational function, such as this, is continuous as long as the denominator is not 0. So we want to find (t, y) such that $2t+ 5y\ne 0$. The simplest way to do that is to say where it is 0! 2t+ 5y= 0 is a straight line in the ty-plane. That is equivalent to the line y= -(2/5)t, a line through the origin with slope -2/5. The hypotheses of theorem 2.4.2 are satisfied every where EXCEPT on that line.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K