-m99.54 List possible Jordan Canonical forms for A.

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Forms List
Click For Summary
SUMMARY

The discussion focuses on determining the possible Jordan Canonical forms for a matrix A with the characteristic polynomial $p_A(t) = (t - 1)^3(t - 5)^2(t - 6)$. The possible Jordan forms are derived based on the eigenvalues 1, 5, and 6, with specific Jordan blocks outlined for each eigenvalue. When all eigenspaces are one-dimensional, the Jordan form for A is represented as a diagonal matrix with eigenvalues 6, 5, and 1. The discussion concludes that there are six distinct Jordan Canonical forms for A based on the combinations of the Jordan blocks.

PREREQUISITES
  • Understanding of Jordan Canonical form
  • Familiarity with characteristic polynomials
  • Knowledge of eigenvalues and eigenvectors
  • Matrix theory concepts, specifically Jordan blocks
NEXT STEPS
  • Study the properties of Jordan Canonical forms in linear algebra
  • Learn how to compute eigenvalues and eigenvectors of matrices
  • Explore the implications of eigenspace dimensions on Jordan forms
  • Investigate the relationship between characteristic polynomials and matrix similarity
USEFUL FOR

Students and professionals in mathematics, particularly those specializing in linear algebra, matrix theory, and theoretical physics, will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{2000}
Let A be a matrix with characteristic polynomial
$ p_A(t) = (t − 1)^3(t − 5)^2(t − 6)$
(a) List the possible Jordan Canonical forms for A.
(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
 
Last edited:
Physics news on Phys.org
$$\begin{bmatrix} 6 \end{bmatrix}$$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix}$$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\
0&5&0&0&0&0\\
0&0&5&0&0&0\\
0&0&0&1&0&0\\
0&0&0&0&1&0\\
0&0&0&0&0&1
\end{bmatrix}$$
 
Suppose $3$ is an eigenvalue with (algebraic) multiplicity $4$.
Then the possible corresponding Jordan blocks for eigenvalue $3$ are:
$$\begin{bmatrix}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$
 
I like Serena said:
Suppose $3$ is an eigenvalue with (algebraic) multiplicity $4$.
Then the possible corresponding Jordan blocks for eigenvalue $3$ are:
$$\begin{bmatrix}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$

Then the possible corresponding Jordan blocks for eigenvalue $5$ are:
\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix} and \begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}so p_A(t) = (t − 1)^3(t − 5)^2(t − 6) has 2 possible Jordan Canonical forms for A.?what would more?
 
karush said:
Then the possible corresponding Jordan blocks for eigenvalue $5$ are:
\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix} and \begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}so p_A(t) = (t − 1)^3(t − 5)^2(t − 6) has 2 possible Jordan Canonical forms for A.?what would more?

There are a bit more, since eigenvalue $1$ also has multiple possibilities for the corresponding Jordan block.
 
I like Serena said:
There are a bit more, since eigenvalue $1$ also has multiple possibilities for the corresponding Jordan block.

$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&0&0\\0&0&1\\0&0&1 \end{bmatrix} $so now we can put the possible combos together?
 
karush said:
$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&0&0\\0&0&1\\0&0&1 \end{bmatrix} $so now we can put the possible combos together?

I'm afraid that 3rd matrix is not correct.
Instead we should have:
$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix} $

And yes, now we can put the possible combos together.
There should be $2\times 3=6$ of them.
 
I hope anyway,, I go blind looking at this...

$\textit{List the possible Jordan Canonical forms for A.}$\\ \\
$\textit{For eigenvalue 6 are}$
$$\begin{bmatrix} 6 \end{bmatrix}$$
$\textit{For eigenvalue 5 are}$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix},
\quad
\begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}$$
$\textit{ For eigenvalue 1 are}$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix}$$
$\textit{ So the 6 possible Jordan Canonical Forms for A are:}$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$

(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
I suppose the answer to this is"
$$\begin{bmatrix}
6\\5\\5\\1\\1\\1
\end{bmatrix}$$
 
Last edited:
karush said:
I hope anyway,, I go blind looking at this...

$\textit{List the possible Jordan Canonical forms for A.}$\\ \\
$\textit{For eigenvalue 6 are}$
$$\begin{bmatrix} 6 \end{bmatrix}$$
$\textit{For eigenvalue 5 are}$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix},
\quad
\begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}$$
$\textit{ For eigenvalue 1 are}$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix}$$
$\textit{ So the 6 possible Jordan Canonical Forms for A are:}$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$

Correct.

karush said:
(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
I suppose the answer to this is"
$$\begin{bmatrix}
6\\5\\5\\1\\1\\1
\end{bmatrix}$$


No, they're asking to pick one of the possible forms of A.
To figure out which one, we need to know what the eigenvectors are.
Can you tell what the eigenvectors are for, say, the first form of $A$?
 
  • #10
I like Serena said:
Correct.
No, they're asking to pick one of the possible forms of A.
To figure out which one, we need to know what the eigenvectors are.Can you tell what the eigenvectors are for, say, the first form of $A$?

Isn't it just 6
 
  • #11
Actually I really don't know what to do
 
  • #12
karush said:
Isn't it just 6

That is the first eigenvalue of the first form of A. An eigenvector is something different.

An eigenvector $\mathbf v$ is a non-zero vector that corresponds to an eigenvalue $\lambda$ such that:
$$A\mathbf v = \lambda \mathbf v$$

In this case:
$$A\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}=6\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}$$
Therefore $\lambda=6$ is an eigenvalue with eigenvector $\mathbf v=\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}$.

This is the only independent vector with this property, which means that the eigenspace of $6$ has dimension $1$ as requested by the problem statement.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K