-m99.54 List possible Jordan Canonical forms for A.

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Forms List
Click For Summary

Discussion Overview

The discussion revolves around identifying the possible Jordan Canonical forms for a matrix A given its characteristic polynomial, specifically $p_A(t) = (t − 1)^3(t − 5)^2(t − 6)$. Participants explore various scenarios, including the case where all eigenspaces are one-dimensional, and they list potential Jordan forms based on the eigenvalues and their algebraic multiplicities.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants list possible Jordan blocks for eigenvalues 6, 5, and 1 based on the characteristic polynomial.
  • Others propose that if all eigenspaces are one-dimensional, the Jordan form for A can be represented in a specific way.
  • Several participants suggest different combinations of Jordan blocks for the eigenvalues, particularly for eigenvalues 1 and 5, indicating multiple possible configurations.
  • Some participants express uncertainty about the correctness of certain Jordan blocks and suggest corrections to previously mentioned forms.
  • There is a discussion about the relationship between eigenvalues and eigenvectors, with one participant clarifying the definition of an eigenvector in the context of the Jordan form.

Areas of Agreement / Disagreement

Participants generally agree on the existence of multiple possible Jordan Canonical forms based on the eigenvalues and their multiplicities. However, there is no consensus on the specific forms or combinations, and some participants challenge or refine earlier claims without reaching a definitive conclusion.

Contextual Notes

Participants note that the discussion is contingent on the assumption of one-dimensional eigenspaces and that the Jordan forms depend on the specific arrangements of Jordan blocks for each eigenvalue, which remain unresolved.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{2000}
Let A be a matrix with characteristic polynomial
$ p_A(t) = (t − 1)^3(t − 5)^2(t − 6)$
(a) List the possible Jordan Canonical forms for A.
(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
 
Last edited:
Physics news on Phys.org
$$\begin{bmatrix} 6 \end{bmatrix}$$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix}$$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\
0&5&0&0&0&0\\
0&0&5&0&0&0\\
0&0&0&1&0&0\\
0&0&0&0&1&0\\
0&0&0&0&0&1
\end{bmatrix}$$
 
Suppose $3$ is an eigenvalue with (algebraic) multiplicity $4$.
Then the possible corresponding Jordan blocks for eigenvalue $3$ are:
$$\begin{bmatrix}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$
 
I like Serena said:
Suppose $3$ is an eigenvalue with (algebraic) multiplicity $4$.
Then the possible corresponding Jordan blocks for eigenvalue $3$ are:
$$\begin{bmatrix}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix},
\begin{bmatrix}3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$

Then the possible corresponding Jordan blocks for eigenvalue $5$ are:
\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix} and \begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}so p_A(t) = (t − 1)^3(t − 5)^2(t − 6) has 2 possible Jordan Canonical forms for A.?what would more?
 
karush said:
Then the possible corresponding Jordan blocks for eigenvalue $5$ are:
\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix} and \begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}so p_A(t) = (t − 1)^3(t − 5)^2(t − 6) has 2 possible Jordan Canonical forms for A.?what would more?

There are a bit more, since eigenvalue $1$ also has multiple possibilities for the corresponding Jordan block.
 
I like Serena said:
There are a bit more, since eigenvalue $1$ also has multiple possibilities for the corresponding Jordan block.

$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&0&0\\0&0&1\\0&0&1 \end{bmatrix} $so now we can put the possible combos together?
 
karush said:
$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&0&0\\0&0&1\\0&0&1 \end{bmatrix} $so now we can put the possible combos together?

I'm afraid that 3rd matrix is not correct.
Instead we should have:
$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
and
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix} $

And yes, now we can put the possible combos together.
There should be $2\times 3=6$ of them.
 
I hope anyway,, I go blind looking at this...

$\textit{List the possible Jordan Canonical forms for A.}$\\ \\
$\textit{For eigenvalue 6 are}$
$$\begin{bmatrix} 6 \end{bmatrix}$$
$\textit{For eigenvalue 5 are}$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix},
\quad
\begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}$$
$\textit{ For eigenvalue 1 are}$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix}$$
$\textit{ So the 6 possible Jordan Canonical Forms for A are:}$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$

(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
I suppose the answer to this is"
$$\begin{bmatrix}
6\\5\\5\\1\\1\\1
\end{bmatrix}$$
 
Last edited:
karush said:
I hope anyway,, I go blind looking at this...

$\textit{List the possible Jordan Canonical forms for A.}$\\ \\
$\textit{For eigenvalue 6 are}$
$$\begin{bmatrix} 6 \end{bmatrix}$$
$\textit{For eigenvalue 5 are}$
$$\begin{bmatrix} 5&0 \\ 0&5 \end{bmatrix},
\quad
\begin{bmatrix} 5&1 \\ 0&5 \end{bmatrix}$$
$\textit{ For eigenvalue 1 are}$
$$\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&0\\0&0&1 \end{bmatrix}
, \quad
\begin{bmatrix} 1&1&0\\0&1&1\\0&0&1 \end{bmatrix}$$
$\textit{ So the 6 possible Jordan Canonical Forms for A are:}$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&0&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$
$$\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&0&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&0\\0&0&0&0&0&1
\end{bmatrix},\quad
\begin{bmatrix}
6&0&0&0&0&0\\0&5&1&0&0&0\\0&0&5&0&0&0\\0&0&0&1&1&0\\0&0&0&0&1&1\\0&0&0&0&0&1
\end{bmatrix}$$

Correct.

karush said:
(b) Suppose all eigenspaces are one dimensional. What is the Jordan form for A in this case?
I suppose the answer to this is"
$$\begin{bmatrix}
6\\5\\5\\1\\1\\1
\end{bmatrix}$$


No, they're asking to pick one of the possible forms of A.
To figure out which one, we need to know what the eigenvectors are.
Can you tell what the eigenvectors are for, say, the first form of $A$?
 
  • #10
I like Serena said:
Correct.
No, they're asking to pick one of the possible forms of A.
To figure out which one, we need to know what the eigenvectors are.Can you tell what the eigenvectors are for, say, the first form of $A$?

Isn't it just 6
 
  • #11
Actually I really don't know what to do
 
  • #12
karush said:
Isn't it just 6

That is the first eigenvalue of the first form of A. An eigenvector is something different.

An eigenvector $\mathbf v$ is a non-zero vector that corresponds to an eigenvalue $\lambda$ such that:
$$A\mathbf v = \lambda \mathbf v$$

In this case:
$$A\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}=6\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}$$
Therefore $\lambda=6$ is an eigenvalue with eigenvector $\mathbf v=\begin{bmatrix}1\\0\\0\\0\\0\\0\end{bmatrix}$.

This is the only independent vector with this property, which means that the eigenspace of $6$ has dimension $1$ as requested by the problem statement.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K