• Support PF! Buy your school textbooks, materials and every day products Here!

Magnetic field around sinusoid shaped wire

  • Thread starter malganis99
  • Start date
  • #1

Homework Statement



I have a long straight wire which is slightly deformed into sinusoid shape. How does the magnetic field change with deformation? Can you express the magnetic field change linearly with sinusoid amplitude?


Homework Equations



parametrized sinuosid equation

x = t
y = a*sin(t)
z=0

[itex]\vec{B}[/itex]=[itex]\frac{μ_{0}*I}{4\Pi}[/itex][itex]\int[/itex][itex]\frac{d\vec{l}×(\vec{r}'(t)-\vec{r}(t))}{|\vec{r}'(t)-\vec{r}(t)|^{3}}[/itex]

The Attempt at a Solution



[itex]\vec{r}[/itex](t)=(t, a*sin(t),0)
[itex]\dot{\vec{r}}[/itex](t)=(1,a*cos(t),0)

[itex]\vec{\xi}[/itex](t)=[itex]\frac{\dot{\vec{r}}(t)}{|\dot{\vec{r}}(t)|}[/itex]=[itex]\frac{(1,a*cos(t),0)}{\sqrt{1+a^{2}*cos^{2}(t)}}[/itex]

d[itex]\vec{l}[/itex] = [itex]\vec{\xi}[/itex](t)dl

dl=|[itex]\frac{d\vec{r}}{dt}[/itex]|*dt=[itex]\sqrt{1+a^{2}*cos^{2}(t)}[/itex]*dt

The cross product in Biot-Savart law
d[itex]\vec{l}[/itex]×([itex]\vec{r}[/itex]'(t)-[itex]\vec{r}[/itex](t))=((1,a*cos(t),0)×(x-t,y-a*sin(t),z))*dt where [itex]\vec{r}[/itex]'(t) is a point in space (x,y,z)

[itex]|\vec{r}[/itex]'(t)-[itex]\vec{r}[/itex](t)|[itex]^{3}[/itex]= [itex]\sqrt{((x-t)^{2}+(y-a*sin(t))^{2}+z^{2})}[/itex][itex]^{3}[/itex]

[itex]\vec{B}[/itex]=[itex]\frac{μ_{0}*I}{4\Pi}[/itex][itex]\int[/itex][itex]\frac{(z*a*cos(t)\hat{i}-z\hat{j}+(y+a(t*cos(t)-x*cos(t)-sin(t))\hat{k})}{\sqrt{(x-t)^{2}+(y-a*sin(t))^{2}+z^{2})}^{3}}[/itex]dt and integral goes from -∞ to +∞


B[itex]_{x}[/itex]=[itex]\frac{μ_{0}*I}{4\Pi}[/itex][itex]\int[/itex][itex]\frac{z*a*cos(t)\hat{i}}{(x^{2}+y^{2}+z^{2}-2xt+t^{2}-2y*a*sin(t))^{3/2}}[/itex]dt

B[itex]_{y}[/itex]=[itex]\frac{μ_{0}*I}{4\Pi}[/itex][itex]\int[/itex][itex]\frac{-z\hat{j}}{(x^{2}+y^{2}+z^{2}-2xt+t^{2}-2y*a*sin(t))^{3/2}}[/itex]dt

B[itex]_{z}[/itex]=[itex]\frac{μ_{0}*I}{4\Pi}[/itex][itex]\int[/itex][itex]\frac{(y+a(t*cos(t)-x*cos(t)-sin(t)))\hat{k}}{(x^{2}+y^{2}+z^{2}-2xt+t^{2}-2y*a*sin(t))^{3/2}}[/itex]dt

When I expanded denominator in Biot_savart law I ignored the terms with a[itex]^{2}[/itex] because they are negligible if a is small.

When I put these integrals in Mathematica it can't solve them. Should I approach the problem differently? Are my calculations correct?

Thanks for the help.
 
Last edited:

Answers and Replies

  • #2
gabbagabbahey
Homework Helper
Gold Member
5,002
6
As [itex]a[/itex] is small, why not expand [itex]\left[ (x-t)^2 + (y-a\sin t)^2 + z^2 \right]^{-\frac{3}{2}}[/itex] in a Taylor series around [itex]a=0[/itex]?
 
  • #3
Thanks for the reply.

I expanded that to the first order of a.

[itex](t^2 - 2 t x + x^2 + y^2 + z^2)[/itex][itex]^{3/2}[/itex] - [itex]3\sqrt{t^2 - 2 t x + x^2 + y^2 + z^2}[/itex][itex]Sin(t) ya [/itex]

I can calculate the integrals with mathematica using NIntegrate. I don't know how to plot the field though. As that is mathematica question I think it's better if I post it in another forum.
 

Related Threads on Magnetic field around sinusoid shaped wire

Replies
8
Views
2K
Replies
0
Views
3K
  • Last Post
Replies
1
Views
3K
Replies
1
Views
414
Replies
0
Views
2K
  • Last Post
Replies
2
Views
4K
Replies
7
Views
7K
Replies
28
Views
5K
Replies
2
Views
407
Replies
23
Views
5K
Top