Magnitude of magnetic field at different points near a capacitor.

Click For Summary
SUMMARY

The discussion focuses on calculating the magnetic field at various points near a capacitor using the Ampere-Maxwell law. The magnetic field expressions derived for points b and d are given by \(B_b = \frac{\mu_0 I}{2\pi r_1}\) and \(B_d = \frac{\mu_0 I}{2\pi r_2}\). For points a and c, the corrected expressions are \(B_a = \frac{\mu_0 I}{2\pi r_1}\) and \(B_c = \frac{\mu_0 I r_2^2}{\epsilon_0 2\pi R^2}\). The discussion highlights the importance of including the displacement current term and correcting the equations to ensure accurate calculations of the magnetic fields.

PREREQUISITES
  • Understanding of the Ampere-Maxwell law
  • Familiarity with magnetic field calculations
  • Knowledge of electric fields in capacitors
  • Basic calculus for time derivatives
NEXT STEPS
  • Study the derivation and applications of the Ampere-Maxwell law
  • Learn about displacement current and its significance in electromagnetic theory
  • Explore the relationship between electric fields and magnetic fields in capacitors
  • Investigate advanced topics in electromagnetic theory, such as Maxwell's equations
USEFUL FOR

Physics students, electrical engineers, and anyone interested in understanding the behavior of magnetic fields around capacitors and the application of electromagnetic laws.

zenterix
Messages
774
Reaction score
84
Homework Statement
Consider a capacitor that is charging, as in the picture below. The capacitor is ideal (no edge effects).

Points ##a## and ##b## areat a distance ##r_1>R## with respect to the center line, and ##c## and ##d## are at a distance ##r_2<R##.
Relevant Equations
Which of the following statements about ##B##, the magnitude of the magnetic field, at points ##a,b,c,## and ##d## are true?

##B(a)>B(b)##
##B(a)<B(b)##
##B(a)=B(b)##

##B(c)>B(d)##
##B(c)<B(d)##
##B(c)=B(d)##
Here is a picture depicting the capacitor and the points of interest.
1715970833063.png

I approached this problem by applying the Ampere-Maxwell law.

For each point I used an circular Amperian loop that I denote by ##P##, enclosing a circular surface ##S##.

Thus, for point ##b## we have

$$\oint_{P_b}\vec{B}\cdot d\vec{s}=B_b2\pi r_1=\mu_0 I\implies B_b=\frac{\mu_0 I}{2\pi r_1}$$

Similarly, for point ##d##

$$B_d=\frac{\mu_0 I}{2\pi r_2}$$

Next, I considered points ##a## and ##c##.

The magnitude of the electric field between the plates is ##\frac{q}{\epsilon_0 A}## where ##A## is the area of a capacitor plate.

$$\oint_{P_a}\vec{B}\cdot d\vec{s}=B_a2\pi r_1=\mu_0\frac{d}{dt}\left (\frac{q}{\epsilon_0 A}\right )\pi R^2$$

$$=\frac{\mu_0 I\pi R^2}{\epsilon_0\pi R^2}$$

$$\implies B_a=\frac{\mu_0I}{\epsilon_0 2\pi r_1}$$

Similarly

$$B_c2\pi r_2=\mu_0\frac{d}{dt}\left (\frac{q}{\epsilon_0 A}\right )\pi r_2^2=\frac{\mu_0 I\pi r_2^2}{\epsilon_0\pi R^2}$$

$$=\frac{\mu_0 Ir_2^2}{\epsilon_0 R^2}$$

$$B_c=\frac{\mu_0 I r_2}{\epsilon_0 2\pi R^2}$$

These are my calculations currently. They seem incorrect. Having a ##\epsilon_0## factor in the denominator of these expressions seems incorrect at first glance given that the order of magnitude of this constant is ##10^{-12}##.
 
Last edited:
Physics news on Phys.org
zenterix said:
The magnitude of the electric field between the plates is ##\frac{q}{\epsilon_0 A}## where ##A## is the area of a capacitor plate.

$$\oint_{P_a}\vec{B}\cdot d\vec{s}=B_a2\pi r_1=\mu_0\frac{d}{dt}\left (\frac{q}{\epsilon_0 A}\right )\pi R^2$$
What is the fundamental law that you are using to set up this equation? You might be missing a factor of ##\epsilon_0##.
 
  • Like
Likes   Reactions: zenterix
If you are going to quote the Ampere-Maxwell law, quote it correctly. The displacement current term (Maxwell's correction) is ##\mathbf J_d=\dfrac{\partial \mathbf D}{\partial t}=\dfrac{\partial (\epsilon_0 \mathbf E)}{\partial t}##. The ##\epsilon_0## in the numerator cancels the one in the denominator.
 
  • Like
Likes   Reactions: zenterix
TSny said:
You might be missing a factor of ϵ0.
Indeed you are correct. I forgot a factor of ##\epsilon_0##.

$$\oint \vec{B}\cdot d\vec{s}=\mu_0\left (\iint_S \vec{J}\cdot\hat{n}dA+\epsilon_0\iint_S \vec{E}\hat{n}dA\right )$$
 
zenterix said:
Indeed you are correct. I forgot a factor of ##\epsilon_0##.

$$\oint \vec{B}\cdot d\vec{s}=\mu_0\left (\iint_S \vec{J}\cdot\hat{n}dA+\epsilon_0\iint_S \vec{E}\hat{n}dA\right )$$
OK, but here you forgot a time derivative.
 
  • Like
Likes   Reactions: zenterix
Indeed

$$\oint \vec{B}\cdot d\vec{s}=\mu_0\left (\iint_S \vec{J}\cdot\hat{n}dA+\epsilon_0\frac{d}{dt}\iint_S \vec{E}\hat{n}dA\right )$$

Fixing the original equations we have

$$B_a=B_b=\frac{\mu_0I}{2\pi r_1}$$

$$B_c=\frac{\mu_0I}{2\pi r_2}\frac{r_2^2}{R^2}$$

$$B_d=\frac{\mu_0I}{2\pi r_2}$$

Thus, ##B_a=B_b## and ##B_c<B_d##.
 
  • Like
Likes   Reactions: TSny
zenterix said:
Indeed
$$\oint \vec{B}\cdot d\vec{s}=\mu_0\left (\iint_S \vec{J}\cdot\hat{n}dA+\epsilon_0\frac{d}{dt}\iint_S \vec{E}\hat{n}dA\right )$$
Fixing the original equations we have

$$B_a=B_b=\frac{\mu_0I}{2\pi r_1}$$
$$B_c=\frac{\mu_0I}{2\pi r_2}\frac{r_2^2}{R^2}$$
$$B_d=\frac{\mu_0I}{2\pi r_2}$$
Thus, ##B_a=B_b## and ##B_c<B_d##.
Looks good to me.
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
1K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
1K
Replies
11
Views
1K