MHB Mahesh's question via email about Laplace Transforms (1)

Click For Summary
The discussion focuses on solving a system of differential equations using Laplace Transforms. The equations involve functions x(t) and y(t) with initial conditions set to zero. By applying the Laplace Transform, the transformed equations are manipulated to express Y(s) in terms of s. The final result for the Laplace Transform of y(t) is derived as Y(s) = 54/(s(54 - (s + 1)^2)). The solution appears to be confirmed as correct within the context of the discussion.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle x\left( t \right) $ and $\displaystyle y\left( t \right) $ satisfy the following system of differential equations:

$\displaystyle \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} + x + 6\,y = 6 \\ \frac{\mathrm{d}y}{\mathrm{d}t} + 9\,x + y = 0 \end{cases}, \quad x \left( 0 \right) = y \left( 0 \right) = 0 $

Find the Laplace Transform of $\displaystyle y\left( t \right) $.

Start by taking the Laplace Transform of both equations, which gives

$\displaystyle \begin{cases} s\,X\left( s \right) - s\,x\left( 0 \right) + X\left( s \right) + 6\,Y\left( s \right) = \frac{6}{s} \\ s\,Y\left( s \right) - s\,y\left( 0 \right) + 9\,X\left( s \right) + Y\left( s \right) = 0 \end{cases} $

$\displaystyle \begin{cases} \left( s + 1 \right) X\left( s \right) + 6\,Y\left( s \right) = \frac{6}{s} \\ 9\,X\left( s \right) + \left( s + 1 \right) Y\left( s \right) = 0 \end{cases} $

From the second equation in the system, we have

$\displaystyle \begin{align*} 9\,X\left( s \right) &= -\left( s + 1 \right) Y\left( s \right) \\
X\left( s \right) &= -\left( \frac{s + 1}{9} \right) Y\left( s \right) \end{align*}$

Substituting into the first equation in the system gives

$\displaystyle \begin{align*} \left( s + 1 \right) \left[ -\left( \frac{s + 1}{9} \right) \right] Y\left( s \right) + 6\,Y\left( s \right) &= \frac{6}{s} \\
\left[ 6 -\frac{\left( s + 1 \right) ^2 }{9} \right] Y\left( s \right) &= \frac{6}{s} \\
\left[ \frac{54 - \left( s + 1 \right) ^2 }{9} \right] Y\left( s \right) &= \frac{6}{s} \\
Y\left( s \right) &= \frac{54}{s\left[ 54 - \left( s + 1 \right) ^2 \right]} \end{align*}$

In Weblearn this would be entered as

54/( s*( 54 - (s + 1)^2 ) )
 
  • Like
Likes benorin and shivajikobardan
Mathematics news on Phys.org
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K