MHB Mahesh's question via email about Laplace Transforms (1)

Click For Summary
The discussion focuses on solving a system of differential equations using Laplace Transforms. The equations involve functions x(t) and y(t) with initial conditions set to zero. By applying the Laplace Transform, the transformed equations are manipulated to express Y(s) in terms of s. The final result for the Laplace Transform of y(t) is derived as Y(s) = 54/(s(54 - (s + 1)^2)). The solution appears to be confirmed as correct within the context of the discussion.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle x\left( t \right) $ and $\displaystyle y\left( t \right) $ satisfy the following system of differential equations:

$\displaystyle \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} + x + 6\,y = 6 \\ \frac{\mathrm{d}y}{\mathrm{d}t} + 9\,x + y = 0 \end{cases}, \quad x \left( 0 \right) = y \left( 0 \right) = 0 $

Find the Laplace Transform of $\displaystyle y\left( t \right) $.

Start by taking the Laplace Transform of both equations, which gives

$\displaystyle \begin{cases} s\,X\left( s \right) - s\,x\left( 0 \right) + X\left( s \right) + 6\,Y\left( s \right) = \frac{6}{s} \\ s\,Y\left( s \right) - s\,y\left( 0 \right) + 9\,X\left( s \right) + Y\left( s \right) = 0 \end{cases} $

$\displaystyle \begin{cases} \left( s + 1 \right) X\left( s \right) + 6\,Y\left( s \right) = \frac{6}{s} \\ 9\,X\left( s \right) + \left( s + 1 \right) Y\left( s \right) = 0 \end{cases} $

From the second equation in the system, we have

$\displaystyle \begin{align*} 9\,X\left( s \right) &= -\left( s + 1 \right) Y\left( s \right) \\
X\left( s \right) &= -\left( \frac{s + 1}{9} \right) Y\left( s \right) \end{align*}$

Substituting into the first equation in the system gives

$\displaystyle \begin{align*} \left( s + 1 \right) \left[ -\left( \frac{s + 1}{9} \right) \right] Y\left( s \right) + 6\,Y\left( s \right) &= \frac{6}{s} \\
\left[ 6 -\frac{\left( s + 1 \right) ^2 }{9} \right] Y\left( s \right) &= \frac{6}{s} \\
\left[ \frac{54 - \left( s + 1 \right) ^2 }{9} \right] Y\left( s \right) &= \frac{6}{s} \\
Y\left( s \right) &= \frac{54}{s\left[ 54 - \left( s + 1 \right) ^2 \right]} \end{align*}$

In Weblearn this would be entered as

54/( s*( 54 - (s + 1)^2 ) )
 
  • Like
Likes benorin and shivajikobardan
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K