MHB Making up a differential equation with no real solutions

find_the_fun
Messages
147
Reaction score
0
Make up a differential equation that does not possesses any real solutions.

step 1)consider the definition of solution
Any function [math]\phi[/math] defined on an interval I and possessing at least n derivatives that are continuous on I which when substituted into an nth-order ordinary differential equation reduces the equation to an identity, is said to be a solution of the equation on the interval :confused:

So it sounds to me like the task is to find a function that is not differentiable. Where I'm stuck is every function I know of is differentiable at some point and the question (I think) is asking for a DE that has no solutions over any interval.
 
Physics news on Phys.org
How about the square of a derivative being equated to a negative constant?
 
find_the_fun said:
... consider the definition of solution...

Any function [math]\phi[/math] defined on an interval I and possessing at least n derivatives that are continuous on I which when substituted into an nth-order ordinary differential equation reduces the equation to an identity, is said to be a solution of the equation on the interval :confused:

I'm of the opinion that the constraint of the continuity of the derivatives of the first n order may be removed and that allows the solution of a large number of pratical problems. For example let's consider the first order ODE...

$\displaystyle x^{\ '} = \mathcal {U} (t),\ x(0)=0\ (1)$

... where $\displaystyle \mathcal {U} (*)$ is the Heaviside Step Function...

Heaviside Step Function -- from Wolfram MathWorldIt is easy to verify that the solution of (1) is...

$\displaystyle x(t) = t\ \mathcal {U} (t)\ (2)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top