A Mass measurement in a Penning trap

  • A
  • Thread starter Thread starter kelly0303
  • Start date Start date
AI Thread Summary
The discussion centers on measuring the mass of a molecular ion in a Penning trap, highlighting the impact of polarization on mass measurements. The author derives an effective mass formula, incorporating an induced electric dipole, which aligns with existing research findings. They explore the implications of assuming a fully polarized molecule, leading to a different treatment of the dipole moment in the Lagrangian. The challenge arises in interpreting the term related to the intrinsic dipole moment when factoring in the effects of polarization. The author seeks clarification on how to accurately account for this term in the context of mass measurement.
kelly0303
Messages
573
Reaction score
33
Hello! My question is motivated by this paper (also attached below). They are measuring the mass of a molecular ion in a Penning trap, and they are able to see a difference due to the fact that the molecule gets polarized (the motion is classical and non-relativistic). I was able to derive their result, for an induced electric dipole, using the Lagrangian:

$$L = mv^2/2 + \alpha E^2/2$$
where ##\alpha## is the polarization and ##E## is the electric field. If we use the fact that ##E = vB## we can see from the form of the Lagrangian, if we take the derivative with respect to ##v##:

$$\frac{\partial L}{\partial v} = mv + \alpha v B^2 = (m+\alpha B)v$$
From this we get an effective mass of:

$$m+\alpha B^2$$
which is consistent with their result. However, I was wondering, if we assume that the molecule is highly (or fully) polarized and not just weakly, instead of ##\alpha E^2/2## we have simply ##d E##, where ##d## is the intrinsic dipole moment of the molecule. However, assuming ##d## is constant, which is (very close to being) true for a fully polarized molecule, we have ##d E = dvB## which gives:

$$\frac{\partial L}{\partial v} = mv + dB$$
now we can't factor out ##v## anymore and thus it's not clear anymore how to count ##dB## towards the mass of the molecule. However, intuitively, I would expect that the higher the polarization, the higher the shift in the measured mass. What am I doing wrong, or how should I interpret the ##dB## term in this case? Thank you!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top