Masses colliding due to gravitational attraction

AI Thread Summary
When one mass is fixed, the other mass accelerates due to gravitational attraction, acquiring speed v. In a scenario where both masses can move, they share kinetic energy, resulting in each having a speed of v/√2, leading to a relative speed of √2v. The time taken to collapse a distance r is reduced by a factor of √2 when both masses are mobile. The conservation of energy in the system is maintained because the external force on the fixed mass does not act over a distance. The closing speed of two masses moving towards each other at v/√2 is indeed √2v.
jolly_math
Messages
51
Reaction score
5
Homework Statement
Consider two identical masses that interact only by gravitational attraction to each other. If one mass is fixed in place and the other is released from rest, then the two masses collide in time T. If both masses are released from rest, they collide in time
(A) T/4
(B) T/(2√2)
(C) T/2
(D) T/√2
(E) T
Relevant Equations
F=Gm1m2/(r^2)
KE = 1/2(mv^2)
When one mass is held fixed, the other mass acquires a speed v from gravity.
I don't understand the following explanation:
When both masses can move, they share the kinetic energy, so both have speed v/√2, so the relative speed is √2v. Hence to collapse the same distance r, the latter case will be √2 times faster, thus the time will be T/√2.

When one mass is held fixed, there an external force applied to prevent it from moving, but it is not applied over a distance - is this why energy is conserved in the system?
Why is it that when both have speed v/√2, the relative speed of both masses moving is √2v?

Thank you.
 
Physics news on Phys.org
jolly_math said:
When one mass is held fixed, there an external force applied to prevent it from moving, but it is not applied over a distance - is this why energy is conserved in the system?
Why is it that when both have speed v/√2, the relative speed of both masses moving is √2v?
Yes, that's the basis of the argument. You can formalise it by integrating the force by ##dr## in both cases to derive the same PE for both systems. Hence the same KE at each separation.
 
jolly_math said:
Why is it that when both have speed v/√2, the relative speed of both masses moving is √2v?
If each is moving at speed v/√2 towards the other then their closing speed is twice that, v√2.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top