MHB Math Related ASCII Art Hypercube, Mandelbrot Set, Sierpinski Gasket

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Art
Click For Summary
The discussion features ASCII art representations of mathematical concepts, including a hypercube, the Mandelbrot set, and the Sierpinski gasket. Each piece of art visually illustrates complex mathematical ideas, showcasing the creativity in combining art and math. The hypercube is depicted with three-dimensional perspectives, while the Mandelbrot set emphasizes fractal patterns. The Sierpinski gasket demonstrates recursive geometric patterns. Overall, the thread highlights the intersection of mathematics and artistic expression through ASCII art.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Hypercube:

[textdraw] +___________+
/:\ ,:\
/ : \ , : \
/ : \ , : \
/ : +-----------+
+...:../:...+ : /|
|\ +./.:...`...+ / |
| \ ,`/ : :` ,`/ |
| \ /`. : : ` /` |
| , +-----------+ ` |
|, | `+...:,.|...`+
+...|...,'...+ | /
\ | , ` | /
\ | , ` | /
\|, `|/ mn, 7/97
+___________+[/textdraw]

Mandelbrot Set:

[textdraw] \
`\,/
.-'-.
' `
`. .'
`._ .-~ ~-. _,'
( )' '.( )
`._ _ / .'
( )--' `-. .' ;
. .' '.; ()
`.-.` ' .'
----*-----; .'
.`-'. , `.
' '. .'; ()
(_)- .-' `. ;
,' `-' \ `.
(_). .'(_)
.' '-._ _.-' `.
.' `.
' ; ^aNT
`-,-'
/`\
/`[/textdraw]

Sierpinski Gasket:

[textdraw] /\
/\/\
/\ /\
/\/\/\/\
/\ /\
/\/\ /\/\
/\ /\ /\ /\
/\/\/\/\/\/\/\/\
/\ /\
/\/\ /\/\
/\ /\ /\ /\
/\/\/\/\ /\/\/\/\
/\ /\ /\ /\
/\/\ /\/\ /\/\ /\/\
/\ /\ /\ /\ /\ /\ /\ /\
/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\[/textdraw]
 
Mathematics news on Phys.org

. . . . . . . The Penrose Triangle
Code:
               *---*
              / \   \
             /   \   \
            /     \   \
           /   *   \   \
          /   / \   \   \
         /   /   \   \   \
        /   /   / \   \   \
       /   /   /   \   \   \
      /   /   /---------*   \
     /   /   /               \
    *   /   *-----------------*
     \ /                     /
      *---------------------*
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
14
Views
4K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
15
Views
41K
  • · Replies 5 ·
Replies
5
Views
4K