MHB Math Related ASCII Art Hypercube, Mandelbrot Set, Sierpinski Gasket

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Art
AI Thread Summary
The discussion features ASCII art representations of mathematical concepts, including a hypercube, the Mandelbrot set, and the Sierpinski gasket. Each piece of art visually illustrates complex mathematical ideas, showcasing the creativity in combining art and math. The hypercube is depicted with three-dimensional perspectives, while the Mandelbrot set emphasizes fractal patterns. The Sierpinski gasket demonstrates recursive geometric patterns. Overall, the thread highlights the intersection of mathematics and artistic expression through ASCII art.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Hypercube:

[textdraw] +___________+
/:\ ,:\
/ : \ , : \
/ : \ , : \
/ : +-----------+
+...:../:...+ : /|
|\ +./.:...`...+ / |
| \ ,`/ : :` ,`/ |
| \ /`. : : ` /` |
| , +-----------+ ` |
|, | `+...:,.|...`+
+...|...,'...+ | /
\ | , ` | /
\ | , ` | /
\|, `|/ mn, 7/97
+___________+[/textdraw]

Mandelbrot Set:

[textdraw] \
`\,/
.-'-.
' `
`. .'
`._ .-~ ~-. _,'
( )' '.( )
`._ _ / .'
( )--' `-. .' ;
. .' '.; ()
`.-.` ' .'
----*-----; .'
.`-'. , `.
' '. .'; ()
(_)- .-' `. ;
,' `-' \ `.
(_). .'(_)
.' '-._ _.-' `.
.' `.
' ; ^aNT
`-,-'
/`\
/`[/textdraw]

Sierpinski Gasket:

[textdraw] /\
/\/\
/\ /\
/\/\/\/\
/\ /\
/\/\ /\/\
/\ /\ /\ /\
/\/\/\/\/\/\/\/\
/\ /\
/\/\ /\/\
/\ /\ /\ /\
/\/\/\/\ /\/\/\/\
/\ /\ /\ /\
/\/\ /\/\ /\/\ /\/\
/\ /\ /\ /\ /\ /\ /\ /\
/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\[/textdraw]
 
Mathematics news on Phys.org

. . . . . . . The Penrose Triangle
Code:
               *---*
              / \   \
             /   \   \
            /     \   \
           /   *   \   \
          /   / \   \   \
         /   /   \   \   \
        /   /   / \   \   \
       /   /   /   \   \   \
      /   /   /---------*   \
     /   /   /               \
    *   /   *-----------------*
     \ /                     /
      *---------------------*
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top