Hi,(adsbygoogle = window.adsbygoogle || []).push({});

So here's my latest problem as I get to grips with Mathematica. I will give a simpler version of the one I am actually doing.

I started with a closed set of differential equations. Consider the following equations

[tex]a'(t)=P*b(t)[/tex]

[tex]b'(t)=P^{2}*a(t)[/tex]

with known initial conditions and P is a constant. I solved it for a specific value of P using s=NDSolve[...] with the equations and initial conditions inside the NDSolve argument. I can get a plot of a(t) against t using Plot[Evaluate[a(t)/.s], {t, 0, Infinity}]. So far, so good.

Now, I want to get a feel for how the system behaves for an arbitrary P. I tried to upgrade s to a function that takes in argument p. That is, s[P_]=NDSolve[...] and this works as well. So now, I can input s[5] and get the solution of my DEs for P=5, say. Note that now, I have to use Plot[Evaluate[a(t)/.s[5], {t, 0, Infinity}] to get my plot of a(t) against t.

Similarly, I can get a plot of a[t] against P for a given t. That is, Plot[Evaluate[a(1)/.s[P], {P, 0, Infinity}] works too. But for some reason, this takes a very long time. It takes a good two or three minutes for each value of t. Why is it so slow?

I eventually want to get a 3D plot of a(t) against t and P. I'm not sure how to go about it and even if I did, if it takes two or three minutes for one value of t, it will never be able to do a 3D plot of all t and all P, will it?

Thank you for your help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematica plotting with a slightly complicated relationship between variables

**Physics Forums | Science Articles, Homework Help, Discussion**