(adsbygoogle = window.adsbygoogle || []).push({}); mathematical "connection" in the cartesian product

What is the mathematical connection between elements of a cartesian product ##A\times{}B## and the elements of the sets ##A## and ##B##?

In other words, what is the difference between the set ##A\times{}B## and just any set ##Z## with ##|A|.|B|## elements that creates no contradictions if I choose to make a connection in my head between each element of it and one element of ##A## and one element of ##B## the same way the cartesian product of ##A## and ##B## does?

Because if you forget the usual notation for elements of a cartesian product (e.g. ##(a,b)##, ##a\times{}b##, ##ab##) all you have is a set with cardinality ##|A|.|B|## that you as a human connect to the elements of the sets involved in the product in a particular way, usually through notation.

But if I have ##|Z|=|A|.|B|## how can I prove or disprove that the set ##Z## is the cartesian product of ##A## and ##B##? Are the elements of ##A## and ##B## set theoretically contained in the elements of ##A\times{}B##?

If I choose to say the set ##\{1,2,3,4\}## is the cartesian product of the sets ##\{a,b\}## and ##\{c,d\}## is that incorrect just because of the way that I chose to write the sets down?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematical connection in the cartesian product

Loading...

Similar Threads - Mathematical connection cartesian | Date |
---|---|

B What do you enjoy/like about mathematics? | Feb 6, 2018 |

B Constants in Mathematics | Jan 22, 2018 |

B Complex products: perpendicular vectors and rotation effects | Dec 17, 2017 |

I Connections of Putnam and IMC with research in Mathematics | Nov 28, 2016 |

Image about connection of different parts of Mathematics | Oct 14, 2008 |

**Physics Forums - The Fusion of Science and Community**