- 1,244
- 1,052
I am teaching classical mechanics for students from mathematical dept. Students demand mathematically rigor definition of a rigid body. It is strange but I have not found the one in textbooks.
My attempt
:
Df. (kinematical version): Take a non-void open set ##D\subset\mathbb{R}^3## and a pair of functions:
$$ \boldsymbol r_A\in C^2\big([0,T],\mathbb{R}^3\big),
\quad U\in C^2\big([0,T],\mathrm{SO}(3)\big),\quad U(0)=E,\quad \boldsymbol r_A(0)\in \overline D.$$
We shall say that a point ##B## belongs to the rigid body if its motion is described by the following position vector
$$\boldsymbol r_B(t)=\boldsymbol r_A(t)+U(t)\big(\boldsymbol r_B(0)-\boldsymbol r_A(0)\big),\quad t\in[0,T], \qquad(*)$$
where the initial value ##\boldsymbol r_B(0)\in\overline D.##
By definition the rigid body consists of such points ##B##.
My attempt
Df. (kinematical version): Take a non-void open set ##D\subset\mathbb{R}^3## and a pair of functions:
$$ \boldsymbol r_A\in C^2\big([0,T],\mathbb{R}^3\big),
\quad U\in C^2\big([0,T],\mathrm{SO}(3)\big),\quad U(0)=E,\quad \boldsymbol r_A(0)\in \overline D.$$
We shall say that a point ##B## belongs to the rigid body if its motion is described by the following position vector
$$\boldsymbol r_B(t)=\boldsymbol r_A(t)+U(t)\big(\boldsymbol r_B(0)-\boldsymbol r_A(0)\big),\quad t\in[0,T], \qquad(*)$$
where the initial value ##\boldsymbol r_B(0)\in\overline D.##
By definition the rigid body consists of such points ##B##.
Last edited: