- #1
bananabandana
- 113
- 5
Homework Statement
Let ## \mathbf{r} ## be the position of a point in a rigid body relative to some origin ##O##. Let ##\mathbf{R}## be the position of the centre of mass from that origin. ##\mathbf{r^{*}} = (\mathbf{r}-\mathbf{R})##. ## d\boldsymbol{\phi} ## is the infitesimal vector directed along the axis of rotation, with magnitude of the rotation angle ##d\phi##. Then, show:
$$ \mathbf{v} = \mathbf{V}+\boldsymbol{\Omega} \times \mathbf{r^{*}} $$,
Where $$ \mathbf{v} = \frac{d\mathbf{r}}{dt} \quad \mathbf{V}=\frac{d\mathbf{R}}{dt} \quad \boldsymbol{\Omega} = \frac{d\boldsymbol{\phi}}{dt} $$
Further, assume ## \frac{d\boldsymbol{\Omega}}{dt} = \vec{0}## and prove:
$$ \frac{d\mathbf{v}}{dt} =\frac{d\mathbf{V}}{dt}+ 2 \boldsymbol{\Omega} \times \mathbf{V} + \boldsymbol{\Omega} \times \big( \boldsymbol{\Omega} \times \boldsymbol{r^{*}} \big) $$
Homework Equations
The Attempt at a Solution
[/B]
I think it is possible I have got my origins muddled, here. The result for the velocity I can get to, after Landau [See Landau, Course of Theoretical Physics Vol 1, pg 96-97]
We realize that any displacement of the body (I think this is due to Euler's rotation theorem) can be thought of as a combination of a fixed axis rotation about the centre of mass, and a displacement of the centre of mass itself. So:
$$ d\mathbf{r} =d \mathbf{R} + d\boldsymbol{\phi} \times \mathbf{r^{*}} $$
$$ \mathbf{v} = \mathbf{V} + \boldsymbol{\Omega} \times \mathbf{r^{*}} $$
As required. However, I then run into trouble when I want to look at ##d\mathbf{v}##. Can I write the following:
$$ d\mathbf{v} = d\mathbf{V} + d\boldsymbol{\Omega} \times \mathbf{r^{*}} + \boldsymbol{\Omega} \times d(\mathbf{r}-\mathbf{R}) $$
Then:
$$ \frac{d\mathbf{v}}{dt} = \frac{d\mathbf{V}}{dt} + \frac{d\boldsymbol{\Omega}}{dt} \times \mathbf{r^{*}} + \boldsymbol{\Omega} \times \bigg( \mathbf{V} + \boldsymbol{\Omega} \times \mathbf{r^{*}}\bigg) - \boldsymbol{\Omega} \times \frac{d\mathbf{R}}{dt}$$
Which using the assumption about ##\boldsymbol{\dot{\Omega}}## and the definition ##\mathbf{V} = \frac{d\mathbf{R}}{dt}## simplifies to:
$$ \frac{d\mathbf{v}}{dt} = \frac{d\mathbf{V}}{dt} + \boldsymbol{\Omega}\times \big( \boldsymbol{\Omega} \times \mathbf{r^{*}} \big) $$
Which is completely missing the Coriolis term! Where has it gone?
Thanks!