Matrices: a normal M, a projection Q, Hermitian transpose of product

  • Thread starter Thread starter nomadreid
  • Start date Start date
AI Thread Summary
The discussion focuses on establishing relationships between matrices, specifically proving QMQ=QM and QM*Q=QM*. The user initially expresses confusion about how to proceed with the problem involving Hermitian transposes. They later clarify their understanding, realizing that they can split the Hermitian transpose into its components and apply properties of transposition and complex conjugation. The user concludes that they have resolved their confusion and no longer need assistance. The thread highlights the importance of recognizing matrix properties in solving problems.
nomadreid
Gold Member
Messages
1,748
Reaction score
243
Homework Statement
Given: orthogonal basis, normal matrix M, Projection P onto k-eigenspace, Q orthogonal complement of P, N*= Hermitian transpose of N. Prove: (QMQ)*=Q(M*)Q
Relevant Equations
M*M=MM*, PP=P, Q=(Id-P), Pv = w implies Mw=kw
Establish QMQ=QM and QM*Q = QM*, reducing the problem to
(QM)*=QM*
((Id-P)M)*=(Id-P)M*
(M-PM)*=M*-PM*
Applying to random vector v (ie. |v>),
(M-PM)*v = M*v-PM*v
Not sure where to go from here, although it is probably something that is supposed to be obvious.
Any help would be appreciated.
 
Physics news on Phys.org
This thread can be closed, as I understand how to do it now. Simply split the Hermitian transpose into its two parts as transposing then taking complex conjugate; use (AB)T= BTAT on ((QM)Q) twice, then use (this time using * as simply complex conjugate) (AB)*= A*B* twice. Sorry for the inconvenience; I should have seen this the first time.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top