Matrices Often Used in Quantum Computing

Click For Summary
SUMMARY

This discussion focuses on matrices commonly used in quantum computing, specifically the Hadamard, Pauli X, Y, Z, Phase, and pi/8 matrices. Each matrix is analyzed for properties such as whether they are unitary and self-adjoint, along with their eigenvalues and normalized eigenvectors. The conversation also highlights the implementation of a quantum computer simulator that currently supports Shor's and Grover's algorithms, with plans for future enhancements. The source code for the simulator is available on GitHub at https://github.com/aromanro/QCSim.

PREREQUISITES
  • Understanding of quantum mechanics concepts
  • Familiarity with linear algebra, particularly matrix operations
  • Basic knowledge of quantum algorithms, specifically Shor's and Grover's algorithms
  • Experience with programming and using GitHub for code repositories
NEXT STEPS
  • Research the implementation of quantum gates in quantum computing
  • Learn about the mathematical foundations of quantum mechanics
  • Explore advanced quantum algorithms beyond Shor's and Grover's
  • Investigate the use of PhaseShiftGate in quantum simulations
USEFUL FOR

Quantum computing enthusiasts, researchers in quantum mechanics, software developers working on quantum simulations, and students studying quantum algorithms will benefit from this discussion.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
I am beginning a study I have long wanted to engage in: quantum computing. This is a field lying at the intersection of mathematics, physics, computer science, and electrical engineering - all topics I studied, to varying levels. From time to time, I plan on posting notes and summaries that might prove useful to others studying the same thing. Without further ado:

$$\begin{array}{|c|c|c|c|c|c|} \hline
\textbf{Name} &\textbf{Matrix} &A^{\dagger}A=I? &A=A^{\dagger}? &\textbf{E-values} &\textbf{Norm. E-vectors} \\
\hline
\text{Hadamard} &H=\dfrac{1}{\sqrt{2}}\begin{bmatrix}1 &1\\1 &-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1,\; -1 &\dfrac{1}{\sqrt{4-2\sqrt{2}}}\begin{bmatrix}1 \\ \sqrt{2}-1\end{bmatrix}, \;
\dfrac{1}{\sqrt{4+2\sqrt{2}}}\begin{bmatrix}1 \\ -\sqrt{2}-1\end{bmatrix} \\ \hline
\text{Pauli }X &X=\begin{bmatrix}0 &1\\1 &0\end{bmatrix} &\text{Yes} &\text{Yes} &1, \; -1
&\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-1\end{bmatrix} \\ \hline
\text{Pauli }Y &Y=\begin{bmatrix}0&-i\\i&0\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\i\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-i\end{bmatrix} \\ \hline
\text{Pauli }Z &Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\text{Phase} &S=\begin{bmatrix}1&0\\0&i\end{bmatrix} &\text{Yes} &\text{No} &1,\;i
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\pi/8 &T=\begin{bmatrix}1&0\\0&e^{i\pi/4}\end{bmatrix} &\text{Yes} &\text{No} &1, \; e^{i\pi/4}
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\end{array}$$
 
Last edited by a moderator:
  • Like
Likes   Reactions: aaroman and vanhees71
Physics news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach! Think we can move to QM or Comp Sci forum?
Let's put these two in QM. I don't think they're useful enough for stickying.
 
A few days ago, I started to implement a quantum computer simulator. It's very basic but the things I tried seem to work ok.
For now only Shor (the quantum part) and Grover algorithms are there but I intend to add more.
Source code here: https://github.com/aromanro/QCSim
Phase and pi/8 gates mentioned above can be used with the more general PhaseShiftGate.
 
  • Like
Likes   Reactions: Ackbach

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K