MHB Matrices Often Used in Quantum Computing

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
I am beginning a study I have long wanted to engage in: quantum computing. This is a field lying at the intersection of mathematics, physics, computer science, and electrical engineering - all topics I studied, to varying levels. From time to time, I plan on posting notes and summaries that might prove useful to others studying the same thing. Without further ado:

$$\begin{array}{|c|c|c|c|c|c|} \hline
\textbf{Name} &\textbf{Matrix} &A^{\dagger}A=I? &A=A^{\dagger}? &\textbf{E-values} &\textbf{Norm. E-vectors} \\
\hline
\text{Hadamard} &H=\dfrac{1}{\sqrt{2}}\begin{bmatrix}1 &1\\1 &-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1,\; -1 &\dfrac{1}{\sqrt{4-2\sqrt{2}}}\begin{bmatrix}1 \\ \sqrt{2}-1\end{bmatrix}, \;
\dfrac{1}{\sqrt{4+2\sqrt{2}}}\begin{bmatrix}1 \\ -\sqrt{2}-1\end{bmatrix} \\ \hline
\text{Pauli }X &X=\begin{bmatrix}0 &1\\1 &0\end{bmatrix} &\text{Yes} &\text{Yes} &1, \; -1
&\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-1\end{bmatrix} \\ \hline
\text{Pauli }Y &Y=\begin{bmatrix}0&-i\\i&0\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\i\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-i\end{bmatrix} \\ \hline
\text{Pauli }Z &Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\text{Phase} &S=\begin{bmatrix}1&0\\0&i\end{bmatrix} &\text{Yes} &\text{No} &1,\;i
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\pi/8 &T=\begin{bmatrix}1&0\\0&e^{i\pi/4}\end{bmatrix} &\text{Yes} &\text{No} &1, \; e^{i\pi/4}
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\end{array}$$
 
Last edited by a moderator:
  • Like
Likes aaroman and vanhees71
Physics news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach! Think we can move to QM or Comp Sci forum?
Let's put these two in QM. I don't think they're useful enough for stickying.
 
A few days ago, I started to implement a quantum computer simulator. It's very basic but the things I tried seem to work ok.
For now only Shor (the quantum part) and Grover algorithms are there but I intend to add more.
Source code here: https://github.com/aromanro/QCSim
Phase and pi/8 gates mentioned above can be used with the more general PhaseShiftGate.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top