MHB Matrices Often Used in Quantum Computing

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
I am beginning a study I have long wanted to engage in: quantum computing. This is a field lying at the intersection of mathematics, physics, computer science, and electrical engineering - all topics I studied, to varying levels. From time to time, I plan on posting notes and summaries that might prove useful to others studying the same thing. Without further ado:

$$\begin{array}{|c|c|c|c|c|c|} \hline
\textbf{Name} &\textbf{Matrix} &A^{\dagger}A=I? &A=A^{\dagger}? &\textbf{E-values} &\textbf{Norm. E-vectors} \\
\hline
\text{Hadamard} &H=\dfrac{1}{\sqrt{2}}\begin{bmatrix}1 &1\\1 &-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1,\; -1 &\dfrac{1}{\sqrt{4-2\sqrt{2}}}\begin{bmatrix}1 \\ \sqrt{2}-1\end{bmatrix}, \;
\dfrac{1}{\sqrt{4+2\sqrt{2}}}\begin{bmatrix}1 \\ -\sqrt{2}-1\end{bmatrix} \\ \hline
\text{Pauli }X &X=\begin{bmatrix}0 &1\\1 &0\end{bmatrix} &\text{Yes} &\text{Yes} &1, \; -1
&\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-1\end{bmatrix} \\ \hline
\text{Pauli }Y &Y=\begin{bmatrix}0&-i\\i&0\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\dfrac{1}{\sqrt{2}}\begin{bmatrix}1\\i\end{bmatrix}, \; \dfrac{1}{\sqrt{2}}
\begin{bmatrix}1\\-i\end{bmatrix} \\ \hline
\text{Pauli }Z &Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix} &\text{Yes} &\text{Yes}
&1, \; -1 &\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\text{Phase} &S=\begin{bmatrix}1&0\\0&i\end{bmatrix} &\text{Yes} &\text{No} &1,\;i
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\pi/8 &T=\begin{bmatrix}1&0\\0&e^{i\pi/4}\end{bmatrix} &\text{Yes} &\text{No} &1, \; e^{i\pi/4}
&\begin{bmatrix}1\\0\end{bmatrix}, \; \begin{bmatrix}0\\1\end{bmatrix} \\ \hline
\end{array}$$
 
Last edited by a moderator:
  • Like
Likes aaroman and vanhees71
Physics news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach! Think we can move to QM or Comp Sci forum?
Let's put these two in QM. I don't think they're useful enough for stickying.
 
A few days ago, I started to implement a quantum computer simulator. It's very basic but the things I tried seem to work ok.
For now only Shor (the quantum part) and Grover algorithms are there but I intend to add more.
Source code here: https://github.com/aromanro/QCSim
Phase and pi/8 gates mentioned above can be used with the more general PhaseShiftGate.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top