gruba
- 203
- 1
Homework Statement
Let A:\mathbb R_2[x]\rightarrow \mathbb R_2[x] is a linear transformation defined as (A(p))(x)=p'(x+1) where \mathbb R_2[x] is the space of polynomials of the second order. Find all a,b,c\in\mathbb R such that the matrix \begin{bmatrix}<br /> a & 1 & 0 \\<br /> b & 0 & 1 \\<br /> c & 0 & 0 \\<br /> \end{bmatrix} is the matrix of linear transformation A with respect to some arbitrary basis of \mathbb R_2[x].
Homework Equations
-Polynomial vector space
-Basis
The Attempt at a Solution
If we choose the standard basis, \mathcal B=\{1,x,x^2\}\Rightarrow p(x)=\alpha+\beta x+\gamma x^2,\alpha,\beta,\gamma\in\mathbb R\Rightarrow (A(p))(x)=\beta+(\beta+2\gamma)x+2\gamma x^2\Rightarrow
A(1)=0x^2+0x+1,A(x)=0x^2+1x+1,A(x^2)=2x^2+0x+0
Setting A(1),A(x),A(x^2) as column vectors gives the matrix \begin{bmatrix}<br /> 0 & 0 & 2 \\<br /> 0 & 1 & 0 \\<br /> 1 & 1 & 0 \\<br /> \end{bmatrix} that is not of the form of given matrix \begin{bmatrix}<br /> a & 1 & 0 \\<br /> b & 0 & 1 \\<br /> c & 0 & 0 \\<br /> \end{bmatrix}.
This means that we can't choose the standard basis to get matrix of A that will be of the form \begin{bmatrix}<br /> a & 1 & 0 \\<br /> b & 0 & 1 \\<br /> c & 0 & 0 \\<br /> \end{bmatrix}.
Question: Do we have to guess a proper basis? If not, then how to find one?