Peter said:
Hi Deveno,
Just a clarification regarding the above post ...
You write:
" ... ... First we check additivity. Let:
$\alpha(e_j) = y_j$
$\beta(e_j) = y_j'$, for each $j$.
Then $(\alpha + \beta)(e_j) = \alpha(e_j) + \beta(e_j)$, so:
$\phi(\alpha + \beta) = (y_{ij} + y_{ij}') = (y_{ij}) + (y_{ij}') = \phi(\alpha) + \phi(\beta)$, and:
$\phi(r\cdot\alpha) = (r(y_{ij})) = r\cdot (y_{ij}) = r\cdot\phi(\alpha)$. ... ... etc "
I am unsure how you justify the step:
$$\phi(\alpha + \beta) = (y_{ij} + y_{ij}') $$
Can you explain why this follows?
Further, I am having similar troubles seeing exactly why this step follows:
$$\phi(r\cdot\alpha) = (r(y_{ij}))$$
Can you please explain the justification for this step?
Would appreciate the help ...
Peter
Let's be a bit more specific on how $\alpha$ works. We want to turn $\alpha$ into a matrix. Since:
$\displaystyle \alpha(x) = \alpha\left(\sum_{j=1}^n a_je_j\right) = \sum_{j=1}^na_j\alpha(e_j)$
we are just going to specify the $\alpha(e_j)$.
Let's look at a particular example, to see how this actually works, for $n = 3, R = \Bbb Z$
Suppose $\alpha(a_1,a_2,a_3) = (a_1+2a_2-a_3,a_3,-4a_1+2a_2)$
This is clearly an $\Bbb Z$-linear map $\Bbb Z^3 \to \Bbb Z^3$.
We have:
$\alpha(e_1) = \alpha((1,0,0)) = (1,0,-4)$ <--this is $j = 1$
$\alpha(e_2) = \alpha((0,1,0)) = (2,0,2)$ <--this is $j = 2$
$\alpha(e_3) = \alpha((0,0,1)) = (-1,1,0)$ <--this is $j = 3$.
So for $y_j = \alpha(e_j) = (y_{1j},y_{2j},y_{3j})$ the matrix $(y_{ij})$ is:
$\begin{bmatrix}1&2&-1\\0&0&1\\-4&2&0 \end{bmatrix}$
Note that:
$\begin{bmatrix}1&2&-1\\0&0&1\\-4&2&0 \end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix} = \begin{bmatrix}a_1+2a_2-a_3\\a_3\\-4a_1+2a_2 \end{bmatrix}$
Similarly, if:
$\beta(a_1,a_2,a_3) = (a_1+a_2,2a_2-a_3,4a_2)$
we obtain the matrix:
$\begin{bmatrix}1&1&0\\0&2&-1\\0&4&0 \end{bmatrix}$
Now, by definition:
$(\alpha + \beta)(a_1,a_2,a_3) = \alpha(a_1,a_2,a_3) + \beta(a_1 + a_2 + a_3) = (a_1+2a_2-a_3,a_3,-4a_1+2a_2) + (a_1+a_2,2a_2-a_3,4a_2) = (2a_1+3a_2-a_3,2a_2,-4a_1+6a_2)$
From this we obtain the matrix:
$\begin{bmatrix}2&3&-1\\0&2&0\\-4&6&0\end{bmatrix}$
Note that to obtain the VALUE of $(\alpha + \beta)(e_j)$ we just add the values of $\alpha(e_j)$ and $\beta(e_j)$, so that the $i,j$-th entry is $y_{ij} + y'_{ij}$.
For example:
$\alpha(e_1) = (1,0,-4)$ so for $i = 2$, we have $y_{21} = 0$.
$\beta(e_1) = (1,0,0)$ so for $i = 2$, we have $y_{21}' = 0$.
We would expect, then, that the 2nd coordinate of $(\alpha + \beta)(e_1)$ will be $0 = 0+0$, and indeed:
$(\alpha + \beta)(e_1) = (1,0,-4) + (1,0,0) = (2,0,-4)$ <--the second coordinate is 0.
Now, it is a simple matter to verify that:
$\begin{bmatrix}1&2&-1\\0&0&1\\-4&2&0 \end{bmatrix} + \begin{bmatrix}1&1&0\\0&2&-1\\0&4&0 \end{bmatrix} = \begin{bmatrix}2&3&-1\\0&2&0\\-4&6&0\end{bmatrix}$
The matrix on the right is $\phi(\alpha+\beta)$, the two matrices on the left are $\phi(\alpha) + \phi(\beta)$.
Similarly, by definition, we have:
$(r\cdot \alpha)(a_1,a_2,a_3) = r\alpha((a_1,a_2,a_3))$
$= r(ra_1+2a_2-a_3,a_3,-4a_1+2a_2) = (ra_1+r2a_2-ra_3,ra_3,-r4a_1+r2a_2)$, and we see that:
$(r\cdot\alpha)((1,0,0)) = (r,0,-4r)$
$(r\cdot\alpha)((0,1,0)) = (2r,0,2r)$<--I put the $r$'s on the right since $\Bbb Z$ is commutative
$(r\cdot\alpha)((0,0,1)) = (-r,r,0)$
and we obtain the matrix:
$\begin{bmatrix}r&2r&-r\\0&0&r\\-4r&2r&0\end{bmatrix} = r\begin{bmatrix}1&2&-1\\0&0&1\\-4&2&0 \end{bmatrix}$
which is just $\phi(r\cdot\alpha) = r\cdot(\phi(\alpha))$