MHB Matrix Transformations from R^n to R^n

Click For Summary
Multiplication by the rotation matrix \(A(\theta)\) rotates a vector \(X\) in the xy-plane by an angle \(\theta\). The transpose of this matrix, \(A^T\), effectively performs a rotation in the opposite direction, rotating the vector by \(-\theta\). The standard rotation matrix for \(\mathbb{R}^2\) is given by \(A(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}\). When applying this to the standard basis vectors, the first column corresponds to the image of (1,0) after rotation, while the second column corresponds to the image of (0,1). Understanding these transformations is crucial for grasping matrix operations in linear algebra.
Swati
Messages
16
Reaction score
0
1. If multiplication by A rotates a vector X in the xy-plane through an angle (theta). what is the effect of multiplying x by A^T ? Explain Reason.
 
Physics news on Phys.org
Swati said:
1. If multiplication by A rotates a vector X in the xy-plane through an angle (theta). what is the effect of multiplying x by A^T ? Explain Reason.

Write out the matrix \(A(\theta)\) that rotates vectors by an angle \( \theta\). Now take its transpose, what do you notice?

CB
 
Sorry, I'm not getting it. Can you explain in brief.
 
Swati said:
Sorry, I'm not getting it. Can you explain in brief.

What is the matrix \(A(\theta)\) (the rotation matrix that rotates vectors in \(\mathbb{R}^2\) by \(\theta\) ) written out in full?

CB
 
CaptainBlack said:
What is the matrix \(A(\theta)\) (the rotation matrix that rotates vectors in \(\mathbb{R}^2\) by \(\theta\) ) written out in full?

CB

A=[cos^2(theta)-sin^2(theta), -2sin(theta)cos(theta) ;
2sin(theta)cos(theta),
cos^2(theta)-sin^2(theta)]

(A is 2*2 matrix.)
 
err...no, it's not.

suppose we rotate (counter-clockwise) through an angle of θ.

to get the matrix for such a rotation, we need to know its effect on a basis for the plane.

there's no compelling reason not to use the standard basis {(1,0),(0,1)}, so we will.

it should be (hopefully) obvious that after the rotation, (1,0) gets mapped to (cos(θ),sin(θ)). this tells you what the first column of the matrix should be (WHY?).

what does (0,1) get mapped to?

(HINT: 0 = cos(π/2), 1 = sin(π/2).

what is cos(π/2 + θ), sin(π/2 + θ)? use the angle-sum identities).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K
Replies
27
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K