MHB Max Real Value of $p$ for Triangles with Positive Sides

AI Thread Summary
The maximum real value of \( p \) for positive sides \( m, n, k \) of a triangle, satisfying the inequality \( pmnk > m^3 + n^3 + k^3 \), is determined to be 5. The example triple \( (2, 1, 1) \) shows that \( m^3 + n^3 + k^3 = 5mnk \) while not forming a triangle, indicating \( p \) cannot exceed 5. To prove \( p = 5 \) holds, it is shown that any non-triangle lengths must satisfy \( m^3 + n^3 + k^3 \geq 5mnk \). The analysis reveals that the function \( f(m,n) = 5mn - m^3 - n^3 \) achieves a maximum of 1 within the defined constraints, confirming the inequality. Thus, the conclusion is that \( p = 5 \) is valid under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum real value of $p$ if for any triple of positive real numbers $m,\,n,\,k$ that satisfies the inequality $pmnk>m^3+n^3+k^3$, there exists a triangle with side lengths $m,\,n,\,k$.
 
Mathematics news on Phys.org
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]
 
Opalg said:
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]

Well done, Opalg, well done!(Clapping)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
5
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
12
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Back
Top