MHB Max Real Value of $p$ for Triangles with Positive Sides

Click For Summary
The maximum real value of \( p \) for positive sides \( m, n, k \) of a triangle, satisfying the inequality \( pmnk > m^3 + n^3 + k^3 \), is determined to be 5. The example triple \( (2, 1, 1) \) shows that \( m^3 + n^3 + k^3 = 5mnk \) while not forming a triangle, indicating \( p \) cannot exceed 5. To prove \( p = 5 \) holds, it is shown that any non-triangle lengths must satisfy \( m^3 + n^3 + k^3 \geq 5mnk \). The analysis reveals that the function \( f(m,n) = 5mn - m^3 - n^3 \) achieves a maximum of 1 within the defined constraints, confirming the inequality. Thus, the conclusion is that \( p = 5 \) is valid under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum real value of $p$ if for any triple of positive real numbers $m,\,n,\,k$ that satisfies the inequality $pmnk>m^3+n^3+k^3$, there exists a triangle with side lengths $m,\,n,\,k$.
 
Mathematics news on Phys.org
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]
 
Opalg said:
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]

Well done, Opalg, well done!(Clapping)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
781
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
669
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K