MHB Max Real Value of $p$ for Triangles with Positive Sides

AI Thread Summary
The maximum real value of \( p \) for positive sides \( m, n, k \) of a triangle, satisfying the inequality \( pmnk > m^3 + n^3 + k^3 \), is determined to be 5. The example triple \( (2, 1, 1) \) shows that \( m^3 + n^3 + k^3 = 5mnk \) while not forming a triangle, indicating \( p \) cannot exceed 5. To prove \( p = 5 \) holds, it is shown that any non-triangle lengths must satisfy \( m^3 + n^3 + k^3 \geq 5mnk \). The analysis reveals that the function \( f(m,n) = 5mn - m^3 - n^3 \) achieves a maximum of 1 within the defined constraints, confirming the inequality. Thus, the conclusion is that \( p = 5 \) is valid under the given conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum real value of $p$ if for any triple of positive real numbers $m,\,n,\,k$ that satisfies the inequality $pmnk>m^3+n^3+k^3$, there exists a triangle with side lengths $m,\,n,\,k$.
 
Mathematics news on Phys.org
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]
 
Opalg said:
[sp]The triple $(m,n,k) = (2,1,1)$ satisfies $m^3+n^3+k^3 = 5mnk$. Since those three lengths do not form a triangle, it follows that $p$ cannot be greater than $5$. To show that $p=5$ does have the given property, it will be sufficient to show that every triple $(m,n,k)$ of lengths that do not form a triangle must satisfy the inequality $m^3 + n^3 + k^3 \geqslant 5mnk.$

We may assume that $k$ is the largest of the three numbers. Then the condition that $m$, $n$, $k$ do not form a triangle is $m+n\leqslant k$. The inequality $m^3 + n^3 + k^3 \geqslant 5mnk$ is homogeneous of degree $3$, so it will be sufficient to scale $m$, $n$, $k$ so that $k=1$ and $m+n\leqslant1$. The inequality then becomes $5mn - m^3 - n^3 \leqslant 1.$ Thus we want to find the maximum value of $f(m,n) = 5mn - m^3 - n^3$ in the triangle $m\geqslant 0$, $n\geqslant 0$, $m+n\leqslant 1.$

The function $f(m,n)$ has no critical points inside the triangle (in fact, its only critical points are $(0,0)$ and $\bigl(\frac53,\frac53\bigr)$), so its maximum value must occur on the boundary. If $m=0$ or $n=0$ then $f(m,n)=0$. If $m+n=1$ then $$f(m,n) = 5m(1-m) - m^3 - (1-m)^3 = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2,$$ which has a maximum value $1$ (when $m= \frac12$). Therefore $f(m,n)\leqslant 1$ in the triangle, as required.[/sp]

Well done, Opalg, well done!(Clapping)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
5
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
12
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Back
Top