MHB Max Value of $b$ for Real Roots of $f(x)$ and $g(x)$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Max Roots Value
Click For Summary
The discussion focuses on determining the maximum value of the parameter $b$ in the polynomial $f(x)=x^3+ax^2+bx-1$, given that its roots $r, s, t$ lead to the roots $r^2, s^2, t^2$ of another polynomial $g(x)=x^3+mx^2+nx+p$. The condition $g(-1)=-5$ is crucial for finding the relationship between the coefficients and the roots. Participants explore the implications of the roots being real and the constraints imposed by the equations. Ultimately, the goal is to derive the maximum value of $b$ under these conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ and $b$ be real numbers and $r,\,s$ and $t$ be the roots of $f(x)=x^3+ax^2+bx-1$ and $g(x)=x^3+mx^2+nx+p$ has roots $r^2,\,s^2$ and $t^2$. If $g(-1)=-5$, find the maximum possible value of $b$.
 
Mathematics news on Phys.org
Rewrite $g(x)$ in terms of $a$ and $b$...
 
From Vieta's formulas, we know

$=a=r+s+t,\,b=rs+st+tr,\,1=rst$

and

$m=-(r^2+s^2+t^2),\,n=r^2s^2+s^2t^2+t^2r^2,\,p=-r^2s^2t^2$

Let's try to express $m,\,n$ and $p$ in terms of $a$ and $b$. The easiest one is $p$:
$p=-(rst)^2=-1$

From $m$, we square $r+s+t$:
$a^2=(r+s+t)^2=r^2+s^2+t^2+2(rs+st+tr)=-m+2b\implies m=2b-a^2$

Finally, for $n$ we can square $rs+st+tr$:
$b^2=(rs+st+tr)^2=r^2s^2+s^2t^2+t^2r^2+2(r^2st+rs^2t+t^2rs)=n+2rst(r+s+t)=n-2a\implies n=b^2+2a$

So now we write $g(x)$ in terms of $a$ and $b$:
$g(x)=x^3+(2b-a^2)x^2+(b^2+2a)x-1$

We know that $g(-1)=-5$; when we plug this into our equation for $g(x)$ we get

$-5=(-1)^3+(2b-a^2)(-1)^2+(b^2+2a)(-1)-1=1b-a^2-b^2-2a-2\implies a^2+2a+b^2-2b-3=0$

We seek the largest possible value of $b$. Since $a$ is real, we know that the discriminant of this quadratic must be non-negative. In particular,

$2^2-4(b^2-2b-3)\ge 0\implies b^2-2b-4\le 0$

Solving this quadratic gives us that the largest possible value of $b$ is $1+\sqrt{5}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K