Maxima and Minima in calculus

  • MHB
  • Thread starter WMDhamnekar
  • Start date
  • #1
WMDhamnekar
MHB
359
28
Question: Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

Answer:

Let r and h be the radius and height of the right circular cylinder inscribed in a given cone of radius R and height H. Let S be the curved surface area of cylinder.

S = 2πr*h

h = H*(R – r)/R
( Would any Math help board member provide me the detailed explanation of the computation of height of right circular cylinder of greatest curved surface inscribed in a given cone with a figure (as far as possible) ?

So S = 2πr*H(R – r)/R

= $\frac{2πH}{R}(r*R – r^2)$

Differentiate w.r.t.r

$\frac{dS}{dr} = \frac{2πH}{R}(R – 2r)$

For maxima or minima

$\frac{dS}{dr} =0$

=> $\frac{2πH}{R}(R – 2r) = 0$

=> R – 2r = 0

=> R = 2r

=> $r = \frac{R}{2}$

$\frac{d^2S}{dr^2} = \frac{2πH}{R}*(0 – 2)= \frac{-4πH}{R }$(negative)

So for $r = \frac{R}{2},$ S is maximum.
 

Answers and Replies

  • #2
Kansas Boy
45
0
Draw a picture. From the side, a cone of radius R and height h looks like s triangle. I would set up a coordinate system with x-axis along the base, y-axis along the altitude, and origin at the center of the base. Then the peak is at (0, h) and one vertex is at (R, 0). The line between those two points, on the side of the cone, is given by y= -(h/R)x+ h. At x= r, y= -hr/R+ h= h(1- r/R).

The area of the curved side is $2\pi rh(1- r/R)$.
 
  • #3
WMDhamnekar
MHB
359
28
I drew a picture describing this question. Now, how can we prove $\frac{h}{H}=\frac{(R-r)}{R}$


1649742613490.png
 
Last edited:
  • #4
Kansas Boy
45
0
The cone has height H and radius R. Set up a coordinate system so the origin is at the center of the base and the z axis passes through the vertex. Then the vertex is at (0, 0, H) and the x-axis passes through the cone at (R, 0, 0). The line through those two points, in the xz-plane, is given by $z= H\frac{R- x}{R}$.

Taking x= r, for the cylinder, we get $h= H\frac{R- r}{R}$ or, dividing both sides by H, $\frac{h}{H}= \frac{R- r}{R}$.
 

Suggested for: Maxima and Minima in calculus

  • Last Post
Replies
10
Views
137
Replies
15
Views
744
Replies
2
Views
464
Replies
9
Views
705
  • Last Post
Replies
3
Views
516
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
9
Views
1K
Replies
3
Views
337
Top