MHB Maxima, minima, and the mvt application

Click For Summary
To determine the interval where the function is definitely increasing, given that f''(x) ≥ -1 and f'(1) = 3, we can derive that f'(x) ≥ -x + 4. This means that f'(x) remains positive for values of x less than 4. Thus, the function is increasing on the interval (-15, 4). The discussion highlights the importance of understanding the relationship between the second and first derivatives in applying the Mean Value Theorem. Overall, the key takeaway is that the function is guaranteed to be increasing up to x = 4.
T Botha
Messages
1
Reaction score
0
Hi there

I'm prepping for a big test tomorrow and I'm really struggling with this question:If f′′(x)≥−1, x belongs to (−15,15), and f′(1)=3, find the interval over which x is definitely increasing.I'm struggling with substitution because I just don't seem to have enough values. Is there a formula that gives an answer? Please let me know.

:( this is making me so sad.
 
Last edited:
Mathematics news on Phys.org
Since f''(x)\ge -1, f'(x)\ge -x+ C. Since f'(1)= 3, we know that C can be as large as 4. If f'(x)\ge -x+ 4 it will be positive for x less than 4.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K