MHB Maximal Ideal .... Bland - AA - Example 2, Section 3.2.12 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Section
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading The Basics of Abstract Algebra by Paul E. Bland ...

I am focused on Section 3.2 Subrings, Ideals and Factor Rings ... ...

I need help with the proof of Example 2, Section 3.2.12, pages 147 to 148 ... ... Example 2, Section 3.2.12 reads as follows:
View attachment 8262
https://www.physicsforums.com/attachments/8263
In the above example Bland shows that if $$I$$ is an ideal of $$\mathbb{Z}$$ such that $$5 \mathbb{Z} \subset I \subseteq \mathbb{Z}$$ then $$I = \mathbb{Z}$$ ... Bland then claims that $$I$$ is a maximal ideal of $$\mathbb{Z}$$ ...... BUT ...... doesn't Bland also have to show that if $$I$$ is an ideal of $$\mathbb{Z}$$ such that $$5 \mathbb{Z} \subseteq I \subset \mathbb{Z}$$ then $$I = 5 \mathbb{Z}$$ ... ?Can someone explain why Bland's proof is complete as it stands ...

Peter============================================================================***NOTE***

It may help readers to have access to Bland's definition of a maximal ideal ... so I am providing the same as follows:https://www.physicsforums.com/attachments/8264
https://www.physicsforums.com/attachments/8265Sorry about the legibility ... but Bland shades his definitions ...Peter
 
Last edited:
Physics news on Phys.org
Hi Peter,

Actually, Bland claims that $5\mathbb{Z}$ (not $I$ as you wrote) is a maximal ideal of $\mathbb{Z}$.

The two statements are equivalent to ‘‘if $5\mathbb{Z}\subseteq I \subseteq\mathbb{Z}$, then $I=5\mathbb{Z}$ or $I=\mathbb{Z}$’’ (this is the definition in the book).

To see this, let us assume that $5\mathbb{Z}\subseteq I\subset\mathbb{Z}$. If the first inclusion is proper, then, by what has been proved in the example, we must have $I=\mathbb{Z}$, and this contradicts the assumption that the second inclusion is proper.
 
In general, to show that an ideal $M$ of a ring $R$ (i.e. commutative ring with multiplicative identity) is maximal, you can show that for any ideal $I$, either$$M\subset I\subseteq\mathbb Z\ \implies\ I=\mathbb Z$$or$$M\subseteq I\subset\mathbb Z\ \implies\ I=M.$$You don’t have to do both.
 
A similar argument shows that $p \mathbb{Z}$ is a maximal ideal of $\mathbb{Z}$ for each prime $p$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K