MHB Maximal Ideal .... Bland - AA - Example 2, Section 3.2.12 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Section
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading The Basics of Abstract Algebra by Paul E. Bland ...

I am focused on Section 3.2 Subrings, Ideals and Factor Rings ... ...

I need help with the proof of Example 2, Section 3.2.12, pages 147 to 148 ... ... Example 2, Section 3.2.12 reads as follows:
View attachment 8262
https://www.physicsforums.com/attachments/8263
In the above example Bland shows that if $$I$$ is an ideal of $$\mathbb{Z}$$ such that $$5 \mathbb{Z} \subset I \subseteq \mathbb{Z}$$ then $$I = \mathbb{Z}$$ ... Bland then claims that $$I$$ is a maximal ideal of $$\mathbb{Z}$$ ...... BUT ...... doesn't Bland also have to show that if $$I$$ is an ideal of $$\mathbb{Z}$$ such that $$5 \mathbb{Z} \subseteq I \subset \mathbb{Z}$$ then $$I = 5 \mathbb{Z}$$ ... ?Can someone explain why Bland's proof is complete as it stands ...

Peter============================================================================***NOTE***

It may help readers to have access to Bland's definition of a maximal ideal ... so I am providing the same as follows:https://www.physicsforums.com/attachments/8264
https://www.physicsforums.com/attachments/8265Sorry about the legibility ... but Bland shades his definitions ...Peter
 
Last edited:
Physics news on Phys.org
Hi Peter,

Actually, Bland claims that $5\mathbb{Z}$ (not $I$ as you wrote) is a maximal ideal of $\mathbb{Z}$.

The two statements are equivalent to ‘‘if $5\mathbb{Z}\subseteq I \subseteq\mathbb{Z}$, then $I=5\mathbb{Z}$ or $I=\mathbb{Z}$’’ (this is the definition in the book).

To see this, let us assume that $5\mathbb{Z}\subseteq I\subset\mathbb{Z}$. If the first inclusion is proper, then, by what has been proved in the example, we must have $I=\mathbb{Z}$, and this contradicts the assumption that the second inclusion is proper.
 
In general, to show that an ideal $M$ of a ring $R$ (i.e. commutative ring with multiplicative identity) is maximal, you can show that for any ideal $I$, either$$M\subset I\subseteq\mathbb Z\ \implies\ I=\mathbb Z$$or$$M\subseteq I\subset\mathbb Z\ \implies\ I=M.$$You don’t have to do both.
 
A similar argument shows that $p \mathbb{Z}$ is a maximal ideal of $\mathbb{Z}$ for each prime $p$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top