MHB Maximize the sum of squared distances

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion focuses on maximizing the sum of squared distances between points on the surface of an ellipsoid defined by the equation $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2} = 1$. The goal is to select $2n$ points such that their centroid is at the origin, while maximizing the expression \(\sum_{1\leq i < j \leq 2n}\left | P_i-P_j \right |^2\). A suggested solution is provided, likely involving geometric or optimization techniques to achieve the maximum distance configuration. The underlying mathematical principles may involve properties of ellipsoids and distance calculations in three-dimensional space. The discussion emphasizes the importance of both the choice of points and their spatial arrangement on the ellipsoid's surface.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $P_i$ denote the $i$thpoint on the surface of an ellipsoid: $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2} = 1$, where the principal semiaxes obey: $0 < a < b < c$.

Maximize the sum of squared distances:

\[\sum_{1\leq i < j \leq 2n}\left | P_i-P_j \right |^2\]

- over alle possible choices of $2n$ points (centroid of the points is the origin)

Please prove your result.
 
Mathematics news on Phys.org
Here´s the suggested solution:

\[\sum_{1\leq i<j\leq 2n}\left | P_i-P_j \right |^2 =\frac{1}{2}\sum_{i,j = 1}^{2n}\left | P_i-P_j \right |^2 =\frac{1}{2}\sum_{i,j = 1}^{2n}\left ( \left | P_i \right |^2+\left | P_j \right |^2-2P_iP_j \right )\\\\= \frac{1}{2}\left ( 2n\sum_{i=1}^{2n}\left | P_i \right |^2+2n\sum_{j=1}^{2n}\left | P_j \right |^2-2\sum_{i,j=1}^{2n}P_iP_j \right )\\\\=2n\sum_{i=1}^{2n}\left | P_i \right |^2-\sum_{i=1}^{2n}P_i\sum_{j=1}^{2n}P_j \\\\=2n\sum_{i=1}^{2n}\left | P_i \right |^2-\left |\sum_{i=1}^{2n}P_i \right |^2\]

The first term is clearly maximized when all points $P_i$ have the maximum distance from

the origin of $c$. The second term is minimized when $\sum P_i = 0$. We can satisfy both of

these simultaneously if $n$ points are chosen to be $(0, 0, c)$ and the other $n$ points are chosen

to be $(0, 0,−c)$. In this case,

\[\sum_{1\leq i<j\leq 2n}\left | P_i-P_j \right |^2 = 2n2nc^2-0 = 4n^2c^2.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top