Maximum amount of energy the neutron can lose

Click For Summary
SUMMARY

The maximum amount of kinetic energy (KE) that a 1 keV fast neutron can lose during an elastic collision with a helium atom (relative mass 4) is 16/25 keV. This value is derived under the condition of a head-on collision, where the neutron bounces directly back. If the collision is not head-on, the neutron will lose less energy. The analysis using the center of mass frame confirms that the maximum energy loss occurs when the neutron's final velocity is directed opposite to its initial velocity.

PREREQUISITES
  • Understanding of elastic collisions in physics
  • Knowledge of conservation of momentum and energy principles
  • Familiarity with center of mass frame analysis
  • Basic concepts of kinetic energy calculations
NEXT STEPS
  • Study elastic collision equations in one dimension
  • Learn about center of mass frame transformations
  • Explore energy loss in collisions involving different mass ratios
  • Investigate the effects of scattering angles on energy transfer
USEFUL FOR

Physics students, researchers in nuclear physics, and anyone studying particle interactions and energy transfer in collisions.

Sudikshya Pant
Messages
14
Reaction score
0
A 1 keV fast neutron (relative mass 1) in a moderator collides elastically with a helium atom He (relative mass 4) at rest. What is the maximum amount of energy the neutron can lose?

My answer is 16/25 of 1ke but while deriving this answer I simply solved based on the question as if the "maximum" in the question didn't exist. But later on I wondered if it has some significance for which I should have applied different method than the general one i.e. using conservation of momentum and energy assuming different final velocities for both the masses.

I also wondered if the answer could be as the neutron 1ke it might lose all of its energy if it comes to a halt but again I doubt that it is possible because helium is not extremely large in mass compared to neutron.

I wanted help to know if there any significance of maximum in the question? I request you to give hint if it does!
 
Physics news on Phys.org
There is the possibility that the the collision is not "head on".
 
TSny said:
There is the possibility that the the collision is not "head on".
Based on your comment I tried to solve assuming that the neutron formed certain angle after the collision and then worked the problem out in center of momentum frame. Finally, I reached a point where I had to choose the scattering angle for minimum final velocity of the neutron, which was the direction opposite to that of its initial velocity. The answer was 16/25 of 1keV.

Do you think the answer is wrong?
 
I think 16/25 keV is correct for the maximum loss of KE of the neutron. Your analysis in the center of mass frame is a good way to approach the problem.

This occurs for a head-on collision in which the neutron bounces straight back. If the collision is not head-on, then the neutron would lose less energy. Thus, you have found the maximum KE that the neutron could lose.
 
Last edited:
TSny said:
I think 16/25 keV is correct for the maximum loss of KE of the neutron. Your analysis in the center of mass frame is a good way to approach the problem.

This occurs for a head-on collision in which the neutron bounces straight back. If the collision is not head-on, then the neutron would lose less energy. Thus, you have found the maximum KE that the neutron could lose.
Thank you for your help.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
912
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
23
Views
4K
Replies
19
Views
3K
Replies
21
Views
3K
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
55
Views
5K
Replies
10
Views
3K