Maximum number of microchannels in parallel for a syringe pump

AI Thread Summary
To determine the maximum number of microchannels in parallel for a syringe pump without stalling, one must calculate the hydraulic resistance of each channel and the total flow rate. With a maximum linear force of 50 lbf and a desired flow rate of 60 ml/hr per channel, the total flow rate increases with the number of channels. The pressure drop across the channels can be calculated using the formula for hydraulic resistance, factoring in the dynamic viscosity and dimensions of the microchannels. It's crucial to maintain a constant upstream pressure and consider the implications of laminar flow, as well as the practical challenges of maintaining microchannel integrity over time. Experimentation and pressure modulation are recommended for achieving precise fluid delivery.
MSM
Messages
11
Reaction score
0
Basically, I want to determine how many microchannels I can have in parallel to drive a fluid (for now assume water),without the syringe pump stalling. Let's say a syringe pump have a maximum linear force of 50 lbf. and I want to drive the fluid at 60 ml/hr. So if I have 4 parallel channels then the syringe must drive 240 ml/hr. How do I determine the maximum number of channels in parallel before the pump stalls? I can calculate the syringe pressure from the diameter of the syringe and the max linear force.

Here is what I did. Using electrical circuit analogy, we can calculate the hydraulic resistance (RH) in parallel and we have set flow rate (Q) from the syringe pump. I drew a schematic using a circuit drawing tool for simplicity. For a circular shape channel, the resistance is calculated as follows:

RH=8μL/(πd4 )
Where L is the length of the microchannel
d is the diameter of the microchannel
μ is the dynamic viscosity.

Assume all resistances are equal RH1 to RH4.

Now I can calculate the total hydraulic resistance for the parallel channels.
The total flow rate is the sum of all flow rates

then we have
∆P=RHtotal*Q

I am not sure where to go from here. What if I want to pressurize the system to let's say 50 psi? rather than having the system in atmospheric?

How do I link what I calculated to what I am trying to find? Image attached

Thanks
 

Attachments

  • fluid circuit diagram.png
    fluid circuit diagram.png
    5.7 KB · Views: 172
Engineering news on Phys.org
If I understand correctly, you want a flow of 60 ml/hr through each microchannel. If we can assume that each microchannel is the same size and length, then the pressure drop through each channel will be the same.

If all of the microchannels are in parallel, then the pressure needed will be the same regardless of the number of channels. The total flow will be 60 ml/hr times the number of channels.

The flow is almost certainly laminar. You can verify that by calculating the Reynolds number (search the term) for your channel at your flow rate. If the Reynolds number is less than 2000, you have laminar flow. In that case, the flow rate will be proportional to pressure. If you double the pressure, the flow rate will double from 60 ml/hr to 120 ml/hr.

If you need calculate the pressure drop for a flow rate, search Moody chart. Note that the total pressure drop includes the pressure drop of the channels from the pump to the microchannels. That pressure drop is added to the pressure drop of the microchannels.
 
A running pump will not be able to supply that small amount of fluid per minute without creating problems of heating, etc.
It seems that you will need to keep a constant upstream pressure at all times, while having a fixed resistance to the tiny flow.

Consider experimentation and a way to modulate that upstream pressure as your best friends in your goal of delivering a precise volume.
Also consider the practical feasibility of drilling those micro channels and ways to keep them unclogged with time of operation.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top