Maya's question at Yahoo Answers regarding a Riemann sum and definite integral

Click For Summary
SUMMARY

The discussion focuses on calculating the area under a curve using Riemann sums and definite integrals in calculus. The user, Maya, seeks assistance in formulating a Riemann sum and evaluating the corresponding definite integral for the function represented by the area of a strip. The final result of the definite integral is confirmed to be 1/6, derived from the integral A = ∫01 (y - y²) dy, which evaluates to 1/6.

PREREQUISITES
  • Understanding of Riemann sums
  • Knowledge of definite integrals
  • Familiarity with calculus concepts such as limits and area under curves
  • Ability to manipulate algebraic expressions and summations
NEXT STEPS
  • Study the properties of Riemann sums in calculus
  • Learn how to evaluate definite integrals using the Fundamental Theorem of Calculus
  • Explore the concept of limits and their applications in calculus
  • Practice problems involving area calculations under curves using different functions
USEFUL FOR

Students studying calculus, educators teaching calculus concepts, and anyone interested in mastering the techniques of Riemann sums and definite integrals.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

I need some help with calculus 1 please?

Here's my problem:
Write a Riemann sum and then a definite integral representing the area of the region, using the strip shown in the figure below. Evaluate the integral exactly.

View attachment 1138

What is the approximate area of the strip with respect to y? (Use Delta y for Δy as necessary.)

In your definite integral what is the upper endpoint given that the lower endpoint is 0?

and finally, what is the result when you evaluate the definite integral?

10 points to best answer! Thanks!

I have posted a link there to this topic so the OP can see my work.
 

Attachments

  • 8-1-007.jpg
    8-1-007.jpg
    3.5 KB · Views: 139
Physics news on Phys.org
Hello Maya,

I will choose to use the lower end of each strip to determine its width.

For an arbitrary strip, its area can be found as follows:

$$A_k=bh$$

where:

$$y_k=k\frac{y_n-y_0}{n}=k\frac{1-0}{n}=\frac{k}{n}$$

$$b=y_k-y_k^2=\frac{nk-k^2}{n^2}$$

$$h=\Delta y=y_{k+1}-y_{k}=\frac{1}{n}$$

and so we have:

$$A_k=\left(y_k-y_k^2 \right)\Delta y=\frac{nk-k^2}{n^3}$$

Now, summing the strips, we find:

$$A_n=\sum_{k=0}^{n-1}\left(\frac{nk-k^2}{n^3} \right)=\frac{1}{n^3}\sum_{k=0}^{n-1}\left(nk-k^2 \right)$$

Using the following identities:

$$\sum_{k=0}^{n-1}(k)=\frac{n(n-1)}{2}$$

$$\sum_{k=0}^{n-1}(k^2)=\frac{n(n-1)(2n-1)}{6}$$

we obtain:

$$A_n=\frac{1}{n^3}\left(\frac{n^2(n-1)}{2}-\frac{n(n-1)(2n-1)}{6} \right)$$

$$A_n=\frac{1}{n^3}\left(\frac{n\left(n^2-1 \right)}{6} \right)=\frac{n^2-1}{6n^2}$$

Thus, when we write the definite integral and evaluate it, we should find it is equal to:

$$A=\lim_{n\to\infty}A_n=\frac{1}{6}$$

Now, to represent the area as a definite integral, we may use:

$$A=\int_0^1 y-y^2\,dy=\left[\frac{y^2}{2}-\frac{y^3}{3} \right]_0^1=\frac{1}{6}\left[3y^2-2y^3 \right]_0^1=\frac{1}{6}((3-2)-(0-0))=\frac{1}{6}$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K