MHB Maya's question at Yahoo Answers regarding a Riemann sum and definite integral

AI Thread Summary
The discussion focuses on solving a calculus problem involving Riemann sums and definite integrals. The user seeks to represent the area of a region using a Riemann sum and then evaluate the corresponding definite integral. The calculations show that the area can be expressed as A_n and simplifies to A = 1/6 as n approaches infinity. The definite integral is formulated as A = ∫_0^1 (y - y^2) dy, which also evaluates to 1/6. The final result confirms the area under the curve is consistent across both methods.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

I need some help with calculus 1 please?

Here's my problem:
Write a Riemann sum and then a definite integral representing the area of the region, using the strip shown in the figure below. Evaluate the integral exactly.

View attachment 1138

What is the approximate area of the strip with respect to y? (Use Delta y for Δy as necessary.)

In your definite integral what is the upper endpoint given that the lower endpoint is 0?

and finally, what is the result when you evaluate the definite integral?

10 points to best answer! Thanks!

I have posted a link there to this topic so the OP can see my work.
 

Attachments

  • 8-1-007.jpg
    8-1-007.jpg
    3.5 KB · Views: 128
Mathematics news on Phys.org
Hello Maya,

I will choose to use the lower end of each strip to determine its width.

For an arbitrary strip, its area can be found as follows:

$$A_k=bh$$

where:

$$y_k=k\frac{y_n-y_0}{n}=k\frac{1-0}{n}=\frac{k}{n}$$

$$b=y_k-y_k^2=\frac{nk-k^2}{n^2}$$

$$h=\Delta y=y_{k+1}-y_{k}=\frac{1}{n}$$

and so we have:

$$A_k=\left(y_k-y_k^2 \right)\Delta y=\frac{nk-k^2}{n^3}$$

Now, summing the strips, we find:

$$A_n=\sum_{k=0}^{n-1}\left(\frac{nk-k^2}{n^3} \right)=\frac{1}{n^3}\sum_{k=0}^{n-1}\left(nk-k^2 \right)$$

Using the following identities:

$$\sum_{k=0}^{n-1}(k)=\frac{n(n-1)}{2}$$

$$\sum_{k=0}^{n-1}(k^2)=\frac{n(n-1)(2n-1)}{6}$$

we obtain:

$$A_n=\frac{1}{n^3}\left(\frac{n^2(n-1)}{2}-\frac{n(n-1)(2n-1)}{6} \right)$$

$$A_n=\frac{1}{n^3}\left(\frac{n\left(n^2-1 \right)}{6} \right)=\frac{n^2-1}{6n^2}$$

Thus, when we write the definite integral and evaluate it, we should find it is equal to:

$$A=\lim_{n\to\infty}A_n=\frac{1}{6}$$

Now, to represent the area as a definite integral, we may use:

$$A=\int_0^1 y-y^2\,dy=\left[\frac{y^2}{2}-\frac{y^3}{3} \right]_0^1=\frac{1}{6}\left[3y^2-2y^3 \right]_0^1=\frac{1}{6}((3-2)-(0-0))=\frac{1}{6}$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top