Probability of Measuring ##L_x = 0## for a Given ##\psi##

  • Thread starter Thread starter t0pquark
  • Start date Start date
  • Tags Tags
    Measurement
Click For Summary
SUMMARY

The probability of measuring ##L_x = 0## for a given state ##\psi## is calculated using the formula ##\vert \langle L_x = 0 \vert \psi \rangle \vert ^2##. The eigenvalues of the operator ##L_x## are ##\lambda = -1, 0, 1##, with the corresponding eigenvector for ##L_x = 0## being ##\begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ \frac{-1}{\sqrt 2} \end{bmatrix}##. To find the probability, one must compute the inner product of this eigenvector with the state vector ##\vert \psi \rangle = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix}##, resulting in a probability of ##\frac{8}{9}##.

PREREQUISITES
  • Understanding of quantum mechanics and angular momentum operators
  • Familiarity with Hilbert space concepts and vector representations
  • Knowledge of inner product calculations in linear algebra
  • Experience with eigenvalues and eigenvectors in quantum systems
NEXT STEPS
  • Study the transformation of quantum states between different bases, particularly the x-basis and z-basis.
  • Learn about the properties of angular momentum operators in quantum mechanics.
  • Explore the implications of measurement probabilities in quantum mechanics.
  • Investigate the mathematical framework of Hilbert spaces and their applications in quantum theory.
USEFUL FOR

Quantum physicists, students studying quantum mechanics, and anyone interested in the mathematical foundations of quantum measurement theory.

t0pquark
Messages
14
Reaction score
2
Homework Statement
Compute the probability that a measurement of ##L_x## will give zero for an angular momentum particle (1) with ##\vert \psi \rangle = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\
\frac{-2}{3} \end{bmatrix} ##.
Relevant Equations
In a 3D Hilbert space, for spin 1, ##L_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}##.
The probability that a measurement of ##L_x## will give zero for a given ##\psi## should be ##\vert \langle L_x = 0 \vert \psi \rangle \vert ^2##, I think.
I found the eigenvalues of ##L_x## to be ##\lambda = -1, 0, 1##. Since it asks for the probability that the measurement will give zero, I think I should be looking at the eigenvector that corresponds to zero, which is ##\begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ \frac{-1}{\sqrt 2} \end{bmatrix} ##.
I am not sure where to go from here?
 
Physics news on Phys.org
Simply calculate ##| \langle L_x = 0 | \psi \rangle |^2## in vector form.
 
t0pquark said:
Homework Statement: Compute the probability that a measurement of ##L_x## will give zero for an angular momentum particle (1) with ##\vert \psi \rangle = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\
\frac{-2}{3} \end{bmatrix} ##.
Homework Equations: In a 3D Hilbert space, for spin 1, ##L_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}##.

The probability that a measurement of ##L_x## will give zero for a given ##\psi## should be ##\vert \langle L_x = 0 \vert \psi \rangle \vert ^2##, I think.
I found the eigenvalues of ##L_x## to be ##\lambda = -1, 0, 1##. Since it asks for the probability that the measurement will give zero, I think I should be looking at the eigenvector that corresponds to zero, which is ##\begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ \frac{-1}{\sqrt 2} \end{bmatrix} ##.
I am not sure where to go from here?

You need to think about what you are doing. You have a state expressed in one basis ( the z-basis). And you really want that state expressed in another basis (the x-basis).

So, you could do all of the work to transform your state to the x-basis and then you could simply read off the probabilities of getting ##-1, 0, 1## for a measurement of ##L_x##: just take the modulus squared of each component.

But, you are only asked for the probability of getting ##L_x = 0##. So, you only need the zeroth component in the x-basis. So, you don't have to do all the work. You only need to find one component.

Now, if you think about linear algebra, the components of any vector ##\psi## in any basis are given by ##\langle b_n | \psi \rangle##, where ##b_n## is nth basis vector.

In this case, you want the zeroth component of ##\psi## in the x-basis. As you have calculated the zeroth x-basis vector, you can just take the inner product of this with ##\psi##. The probability, as above, is the modulus squared of this component.
 
That explanation helps!

So then I have ##( \begin{bmatrix} \frac{1}{ \sqrt 2} \\ 0 \\ \frac{-1}{ \sqrt 2} \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix} )^2 = (\frac{2}{3 \sqrt 2} + \frac{2}{3 \sqrt 2})^2 = \frac{8}{9}##, right?
 
  • Like
Likes   Reactions: PeroK
t0pquark said:
That explanation helps!

So then I have ##( \begin{bmatrix} \frac{1}{ \sqrt 2} \\ 0 \\ \frac{-1}{ \sqrt 2} \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix} )^2 = (\frac{2}{3 \sqrt 2} + \frac{2}{3 \sqrt 2})^2 = \frac{8}{9}##, right?
The left vector should be a row vector, but otherwise it is correct.
 

Similar threads

Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
16
Views
3K
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K