Understanding the Chain Rule in Mechanics: Solving for Acceleration and Force

Click For Summary
The discussion focuses on applying the chain rule to find acceleration and force for a particle moving with a speed defined by v(x) = α / x. The user initially misunderstands the need for the chain rule, believing they can directly differentiate with respect to time. Clarification reveals that since x is a function of time, the chain rule must be used to correctly derive acceleration as a = (dv/dx)(dx/dt). The resulting force is confirmed to be F(x) = -m α^2 / x^3, aligning with the given answer. The thread concludes with a note about the forum's functionality regarding marking discussions as resolved.
AshesToFeonix
Messages
11
Reaction score
0

Homework Statement




6. A particle of mass m moves along a frictionless, horizontal plane with a speed given by

v(x) = α / x. Where x is the distance of the object from the origin and α is a constant.

Working with F = ma, we want to get the acceleration. You have v = v(x). You want a = dv/dt. Find (dv/dx)(dx/dt). Find the force F(x) to which the particle is subjected to.




The Attempt at a Solution



I guess my problem is I don't understand why I need to use chain rule since v = dx/dt. I thought I could take the derivative in respect to t on both sides, and get dv/dt = - α / x^2, then multiply both sides by m to get the force equation.

the answer is given, -m α^2/ x^3. So can someone explain what I'm missing here...
 
Physics news on Phys.org
You need to use the chain rule because x is some function of t. What you have done above is find dv/dx. Now you have correctly identified dx/dt as v and you know v = a/x, so what is (dv/dx)*(dx/dt)?
 
wow awesome thanks that clears up a lot. I almost gave up on anyone answering me. I read that there was a way to close a thread or say that the problem is solved but I'm not seeing it on here so I guess'll have to leave it as is.
 
The forum software was upgraded recently and I think only mentors can mark it solved at the minute. Just leave it as it is for now. :smile:
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 27 ·
Replies
27
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 42 ·
2
Replies
42
Views
6K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
3K