MHB Mechanics- general motion in a straight line.

AI Thread Summary
The discussion revolves around the motion of a ball bearing fired vertically upwards through a tub of butter, with a focus on calculating various aspects of its motion. The upward velocity is defined by the equation v=13-10t-3t^2 cm/s, and participants are asked to determine when the ball bearing comes to rest and how far it travels upwards at that point. The downward motion is described by the equation v=10T cm/s, and the challenge lies in calculating the time taken for the ball bearing to fall back to its original position after it momentarily stops. There is confusion regarding the integration process needed to solve for the time in part (c). Clarification is sought on how to correctly set up and solve the integral equation related to the downward motion.
Shah 72
MHB
Messages
274
Reaction score
0
20210608_181630.jpg

I calculated q(a)=1s
q(b)=7cm
I don't understand q(c)
 
Mathematics news on Phys.org
Fix the image to make it readable or type out the problem statement yourself.
 
skeeter said:
Fix the image to make it readable or type out the problem statement yourself.
Apologies.
A ball bearing is fired vertically upwards in a straight line through a tub of butter. The upward velocity of the ball bearing is given by v=13-10t-3t^2 cm/s, where t is the time from when it was fired upwards.
a) Find the time when the ball bearing comes momentarily to rest
b) Find how far the ball bearing has traveled upwards at this time

The ball bearing then falls downwards through the hole it has made in the butter. The downward velocity of the ball bearing is given by v= 10T cm/s, where T is the time from when it was momentarily at rest.
C) Find the time that the ball bearing takes ( from when it was momentarily at rest) to fall to its original position.
Iam not understand how to calculate (c)
 
$\displaystyle \int_0^t 10T \, dT = 7$

solve for $t$
 
skeeter said:
$\displaystyle \int_0^t 10T \, dT = 7$

solve for $t$
Thank you very much!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
7
Views
921
Replies
2
Views
980
Replies
2
Views
2K
Replies
4
Views
2K
Replies
5
Views
1K
Replies
6
Views
1K
Replies
8
Views
1K
Replies
8
Views
2K
Back
Top