MHB Mesh Currents with Differential Equations

madbo517
Messages
4
Reaction score
0
I've attached a picture of the problem statement, figure, and of my work so far.

I'm trying to use mesh currents and then differentiate it, but I really have no idea if I'm on the right track.

Also, I don't understand why i1 isn't just V/R (The physical current is the mesh current for R1, right?).

As you can tell, I'm pretty lost.
Would appreciate any help offered :)
 

Attachments

  • MHB#63.jpg
    MHB#63.jpg
    68.5 KB · Views: 85
  • mhbmeshcurrentswork.jpg
    mhbmeshcurrentswork.jpg
    68.3 KB · Views: 85
Mathematics news on Phys.org
Because the problem only asks for what's happening at $t=0$ and $t=\infty$, you won't actually have to solve any DE's for this problem. Remember what a charged and discharged capacitor look like, right? So you can use that knowledge to determine the answers to the questions asked.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top